Spatio-Temporal Segmentation of Active Multiple Sclerosis Lesions in Serial MRI Data

Author(s):  
Gabor Székely ◽  
Daniel Welti ◽  
Guido Gerig ◽  
Ernst-Wilhelm Radü ◽  
Ludwig Kappos
Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Massimiliano Pau ◽  
Bruno Leban ◽  
Michela Deidda ◽  
Federica Putzolu ◽  
Micaela Porta ◽  
...  

The majority of people with Multiple Sclerosis (pwMS), report lower limb motor dysfunctions, which may relevantly affect postural control, gait and a wide range of activities of daily living. While it is quite common to observe a different impact of the disease on the two limbs (i.e., one of them is more affected), less clear are the effects of such asymmetry on gait performance. The present retrospective cross-sectional study aimed to characterize the magnitude of interlimb asymmetry in pwMS, particularly as regards the joint kinematics, using parameters derived from angle-angle diagrams. To this end, we analyzed gait patterns of 101 pwMS (55 women, 46 men, mean age 46.3, average Expanded Disability Status Scale (EDSS) score 3.5, range 1–6.5) and 81 unaffected individuals age- and sex-matched who underwent 3D computerized gait analysis carried out using an eight-camera motion capture system. Spatio-temporal parameters and kinematics in the sagittal plane at hip, knee and ankle joints were considered for the analysis. The angular trends of left and right sides were processed to build synchronized angle–angle diagrams (cyclograms) for each joint, and symmetry was assessed by computing several geometrical features such as area, orientation and Trend Symmetry. Based on cyclogram orientation and Trend Symmetry, the results show that pwMS exhibit significantly greater asymmetry in all three joints with respect to unaffected individuals. In particular, orientation values were as follows: 5.1 of pwMS vs. 1.6 of unaffected individuals at hip joint, 7.0 vs. 1.5 at knee and 6.4 vs. 3.0 at ankle (p < 0.001 in all cases), while for Trend Symmetry we obtained at hip 1.7 of pwMS vs. 0.3 of unaffected individuals, 4.2 vs. 0.5 at knee and 8.5 vs. 1.5 at ankle (p < 0.001 in all cases). Moreover, the same parameters were sensitive enough to discriminate individuals of different disability levels. With few exceptions, all the calculated symmetry parameters were found significantly correlated with the main spatio-temporal parameters of gait and the EDSS score. In particular, large correlations were detected between Trend Symmetry and gait speed (with rho values in the range of –0.58 to –0.63 depending on the considered joint, p < 0.001) and between Trend Symmetry and EDSS score (rho = 0.62 to 0.69, p < 0.001). Such results suggest not only that MS is associated with significantly marked interlimb asymmetry during gait but also that such asymmetry worsens as the disease progresses and that it has a relevant impact on gait performances.


Author(s):  
Guoliang Luo ◽  
Zhigang Deng ◽  
Xin Zhao ◽  
Xiaogang Jin ◽  
Wei Zeng ◽  
...  

2017 ◽  
Vol 381 ◽  
pp. 796
Author(s):  
F. Otto ◽  
B. Bajer-Kornek ◽  
P. Rommer ◽  
F. Leutmezer ◽  
C. Franta-Elmer ◽  
...  

2004 ◽  
Vol 11 (7) ◽  
pp. 445-449 ◽  
Author(s):  
T. L. Sorensen ◽  
R. M. Ransohoff ◽  
R. M. Strieter ◽  
F. Sellebjerg

Sign in / Sign up

Export Citation Format

Share Document