Three-Dimensional Electromagnetic Particle-in-Cell Code Using High Performance Fortran on PC Cluster

Author(s):  
DongSheng Cai ◽  
Yaoting Li ◽  
Ken-ichi Nishikawa ◽  
Chiejie Xiao ◽  
Xiaoyan Yan
2012 ◽  
Vol 79 (1) ◽  
pp. 69-86 ◽  
Author(s):  
JUN ZHOU ◽  
D. G. LIU ◽  
C. LIAO

AbstractThe CHIPIC code, a fully electromagnetic particle-in-cell (PIC) code for modeling and simulations of high-power microwave (HPM) devices, is introduced in this paper. It consists of a two-dimensional (2D) code and a three-dimensional (3D) code. The 2D code can model and simulate HPM devices with symmetric structure on 2D Cartesian, cylindrical and polar grids, while the 3D code can model and simulate HPM devices on 3D Cartesian and cylindrical grids. The fields are calculated using the finite-difference time-domain scheme, and the particles are described by the PIC scheme. Various types of boundary conditions have also been implemented for different kinds of applications. In addition, the 3D code is specifically designed for high-performance modeling and computing. It uses the message passing interface and the open specifications for multiprocessing (OpenMP) for parallelization. Its parallel design ensures that it is capable of efficiently executing on a variety of architectures. In order to allow efficient use of parallel architectures, it provides automated partitioning and dynamic load balancing. Even though this code is still in development, it has successfully simulated various real-world HPM experimental devices. Simulation results on some typical HPM devices by using the CHIPIC code are given, which agree well with those obtained from some well-known PIC codes. Direction for future work is also presented.


2015 ◽  
Vol 730 ◽  
pp. 3-10
Author(s):  
Jun Du ◽  
Zhi Rong Mei ◽  
Li Lei Fu ◽  
Kui Zhang

Since numerical simulation method came out, it has caused a great importance to tunnel engineers and has been used widely. But it has been restricted in three-dimensional numerical analysis of multi-element and multi-working conditions because the out of memory of personal computer, the high cost of high-performance computer and so on. In view of this, we need to search the low-cost computing devices to solve the large-scale three-dimensional numerical simulation in tunnel engineering. After investigation and study, we have built a Linux-based PC cluster system successfully, and use it to simulate the excavation process of Xiamen Jiaheyuan underground access which is a rectangular shallow buried soft soil tunnel. The simulation results provide a basis for the construction. Linux-based PC cluster system provides a convenient and cheap solution for tunnel engineers in three-dimensional numerical simulation of multi-element and multi-working conditions.


Author(s):  
Lee D. Peachey ◽  
Lou Fodor ◽  
John C. Haselgrove ◽  
Stanley M. Dunn ◽  
Junqing Huang

Stereo pairs of electron microscope images provide valuable visual impressions of the three-dimensional nature of specimens, including biological objects. Beyond this one seeks quantitatively accurate models and measurements of the three dimensional positions and sizes of structures in the specimen. In our laboratory, we have sought to combine high resolution video cameras with high performance computer graphics systems to improve both the ease of building 3D reconstructions and the accuracy of 3D measurements, by using multiple tilt images of the same specimen tilted over a wider range of angles than can be viewed stereoscopically. Ultimately we also wish to automate the reconstruction and measurement process, and have initiated work in that direction.Figure 1 is a stereo pair of 400 kV images from a 1 micrometer thick transverse section of frog skeletal muscle stained with the Golgi stain. This stain selectively increases the density of the transverse tubular network in these muscle cells, and it is this network that we reconstruct in this example.


2020 ◽  
Author(s):  
Peiyao Wang ◽  
Bangchuan Zhao ◽  
Jin Bai ◽  
Kunzhen Li ◽  
Hongyang Ma ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document