reticular structure
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Hongyan Qi ◽  
Guixiong Gao ◽  
Huixin Wang ◽  
Yunhai Ma ◽  
Hubiao Wang ◽  
...  

The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which makes it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterized the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found that (1) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (2) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (3) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increment of distance from the enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guidelines for the design of bionic machinery and materials.


2021 ◽  
pp. 155-160 ◽  

We describe a necessary stage in preparing the frontal approach of designing specialized applications. Such applications enable services dedicated to assisting the learning process (CAE). Therefore, our topic is dedicated to services, which assist the learning process. The novelty of the approach consists in the cybernetic analysis of the role and possible ways of working under conditions in which features of a set of automatic systems that work autonomously for each individual student and/or in an integrated manner for the training group, are considered the determinant process. This process is derived from the software dedicated to computer-assisted education. The preparation stage led to introducing a reticular structure of action, with multiple argumentations, in which some of the principles of traditional school were discussed. The model set of requirements enabled to introduce the design steps for developing the automation the learning process.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Maryam Alqabandi ◽  
Nicola de Franceschi ◽  
Sourav Maity ◽  
Nolwenn Miguet ◽  
Marta Bally ◽  
...  

Abstract Background ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. Results Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. Conclusions We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 193
Author(s):  
Xiangyi Ren ◽  
Shuli Tang ◽  
Hanguang Fu ◽  
Jiandong Xing

This work investigated the microstructure and mechanical property of high-boron multi-component alloy with Fe, B, C, Cr, Mo, Al, Si, V, Mn and different contents of Ti. The results indicate that the as-cast metallurgical microstructure of high-boron multi-component alloys consist of ferrite, pearlite and borocarbide. In an un-modified alloy, continuous reticular structure of borocarbide is observed. After titanium addition, the structure of borocarbide changes into a fine and isolated morphology. TiC is the existence form of titanium in the alloy, which acts as the heterogeneous nuclei for eutectic borocarbide. Moreover, impact toughness of the alloy is remarkably improved by titanium modification.


2020 ◽  
Vol 186 ◽  
pp. 104-108
Author(s):  
Peiyao Wang ◽  
Bangchuan Zhao ◽  
Jin Bai ◽  
Kunzhen Li ◽  
Hongyang Ma ◽  
...  

2020 ◽  
Author(s):  
Peiyao Wang ◽  
Bangchuan Zhao ◽  
Jin Bai ◽  
Kunzhen Li ◽  
Hongyang Ma ◽  
...  

2019 ◽  
Author(s):  
Maryam Alqabandi ◽  
Nicola de Franceschi ◽  
Nolwenn Miguet ◽  
Sourav Maity ◽  
Marta Bally ◽  
...  

ABSTRACTESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, CHMP2 exists as two potential isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. Here, we use a combination of technics on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Eventually, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. Altogether, we conclude that CHMP2B and CHMP2A cannot be considered as isoforms and might thus contribute differently to membrane remodeling processes.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 514 ◽  
Author(s):  
Qi Liu ◽  
Guifu Ding ◽  
Yipin Wang ◽  
Jinyuan Yao

In this paper, two kinds of suspended micro hotplate with novel shapes of multibeam structure and reticular structure are designed. These designs have a reliable mechanical strength, so they can be designed and fabricated on single-layer SiO2 suspended film through a simplified process. Single-layer suspended film helps to reduce power consumption. Based on the new film shapes, different resistance heaters with various widths and thicknesses are designed. Then, the temperature uniformity and power consumption of different micro hotplates are compared to study the effect of these variables and obtain the one with the optimal thermal performance. We report the simulations of temperature uniformity and give the corresponding infrared images in measurement. The experimental temperature differences are larger than those of the simulation. Experimental results show that the lowest power consumption and the minimum temperature difference are 43 mW and 50 °C, respectively, when the highest temperature on the suspended platform (240 × 240 μm2) is 450 °C. Compared to the traditional four-beam micro hotplate, temperature non-uniformity is reduced by about 30–50%.


Sign in / Sign up

Export Citation Format

Share Document