Parallel Execution Models for Constraint Propagation

Author(s):  
Alvaro Ruiz-Andino ◽  
Lourdes Araujo ◽  
Fernando Sàenz ◽  
Jose Ruz
2008 ◽  
Vol 18 (01) ◽  
pp. 23-37 ◽  
Author(s):  
CLEMENS GRELCK ◽  
STEFFEN KUTHE ◽  
SVEN-BODO SCHOLZ

We propose a novel execution model for the implicitly parallel execution of data parallel programs in the presence of general I/O operations. This model is called hybrid because it combines the advantages of the standard execution models fork/join and SPMD. Based on program analysis the hybrid model adapts itself to one or the other on the granularity of individual instructions. We outline compilation techniques that systematically derive the organization of parallel code from data flow characteristics aiming at the reduction of execution mode switches in general and synchronization/communication requirements in particular. Experiments based on a prototype implementation show the effectiveness of the hybrid execution model for reducing parallel overhead.


2017 ◽  
Vol 2 (1) ◽  
pp. 27-32
Author(s):  
Botchkaryov. A. ◽  

The way of functional coordination of methods of organization adaptive data collection processes and methods of spatial self-organization of mobile agents by parallel execution of the corresponding data collection processes and the process of motion control of a mobile agent using the proposed protocol of their interaction and the algorithm of parallel execution planning is proposed. The method allows to speed up the calculations in the decision block of the mobile agent by an average of 40.6%. Key words: functional coordination, adaptive data collection process, spatial self-organization, mobile agents


Author(s):  
András Éles ◽  
István Heckl ◽  
Heriberto Cabezas

AbstractA mathematical model is introduced to solve a mobile workforce management problem. In such a problem there are a number of tasks to be executed at different locations by various teams. For example, when an electricity utility company has to deal with planned system upgrades and damages caused by storms. The aim is to determine the schedule of the teams in such a way that the overall cost is minimal. The mobile workforce management problem involves scheduling. The following questions should be answered: when to perform a task, how to route vehicles—the vehicle routing problem—and the order the sites should be visited and by which teams. These problems are already complex in themselves. This paper proposes an integrated mathematical programming model formulation, which, by the assignment of its binary variables, can be easily included in heuristic algorithmic frameworks. In the problem specification, a wide range of parameters can be set. This includes absolute and expected time windows for tasks, packing and unpacking in case of team movement, resource utilization, relations between tasks such as precedence, mutual exclusion or parallel execution, and team-dependent travelling and execution times and costs. To make the model able to solve larger problems, an algorithmic framework is also implemented which can be used to find heuristic solutions in acceptable time. This latter solution method can be used as an alternative. Computational performance is examined through a series of test cases in which the most important factors are scaled.


Sign in / Sign up

Export Citation Format

Share Document