Discovery of the Transuranium Elements Inspired Rearrangement of the Periodic Table and the Approach for Finding New Elements

Author(s):  
David L. Clark ◽  
David E. Hobart
Author(s):  
Eric Scerri

The term “infra-uranium,” meaning before uranium, is one that I have proposed by contrast to the better-known term transuranium elements that are discussed in the following chapter. The present chapter concerns the last seven elements that formed the missing gaps in the old periodic table that ended with the element uranium. After Moseley developed his X-ray method, it became clear that there were just seven elements yet to be isolated among the 92 naturally occurring elements or hydrogen (#1) to uranium (#92). This apparent simplicity is somewhat spoiled by the fact that, as it turned out, some of these seven elements were first isolated from natural sources following their being artificially created, but this raises more issues that are best left to the next chapter of this book. The fact remains that five of these seven elements are radioactive, the two exceptions being hafnium and rhenium, the second and third of them to be isolated. The first of the seven final infra-uranium elements to be discovered was protactinium, and it was one of the lesser-known predictions made by Mendeleev. In his famous 1896 paper, Mendeleev indicated incorrect values for both thorium (118) and uranium (116). (See figure 1.6.) A couple of years later, he corrected both of these values and showed a missing element between thorium and uranium (figure 4.4). In doing so, Mendeleev added the following paragraph, in which he made some specific predictions. . . . Between thorium and uranium in this series we can further expect an element with an atomic weight of about 235. This element should form a highest oxide R2O5, like Nb and Ta to which it should be analogous. Perhaps in the minerals which contain these elements a certain amount of weak acid formed from this metal will also be found.. . . The modern atomic weight for eka-tantalum or protactinium is 229.2. The apparent inaccuracy in Mendeleev’s prediction is not too surprising, however, since he never knew that protactinium is a member of only four “pair reversals” in the entire periodic table.


Author(s):  
Eric Scerri

The periodic table consists of about 90 elements that occur naturally ending with element 92 uranium. This lack of precision is deliberate since one or two elements such as technetium were first created artificially and only later found to occur naturally on earth. This kind of occurrence provides a foreshadowing of things to come when we begin to discuss the transuranium elements, meaning those beyond uranium that have been artificially synthesized. Chemists and physicists have succeeded in synthesizing some of the elements that were missing between hydrogen (1) and uranium (92). In addition, they have synthesized a further 25, or so, new elements beyond uranium, although, again, one or two of these elements, like neptunium and plutonium, were later found to exist naturally in exceedingly small amounts. The existence of superheavy elements raises a number of interesting questions that pertain to the field of philosophy of science and also sociology of science. In fact, the very question of whether these superheavy elements actually exist needs to be dissected further, as it will be in the course of this chapter. The synthetic elements are extremely unstable, and only the lightest ones among them have been created in amounts large enough to be observed. Roughly speaking, the heavier the atom, the shorter its lifetime is. For example, the heaviest element for which there is now conclusive evidence is element 118, a few atoms of which have been created in just one single isotope form and with a half-life of less than a millisecond. Laypersons and specialists alike have asked themselves in what sense these elements can really be said to exist. The superheavy elements also have philosophical implications for the study of the periodic system as a whole and the question of whether there is a natural end to chemical periodicity. A related question, which has now become quite pressing, is the possible extension of the periodic table to include a new g-block which in formal terms should begin at element 121.


Terminology ◽  
1994 ◽  
Vol 1 (2) ◽  
pp. 229-252 ◽  
Author(s):  
Glenn T. Seaborg

Beginning in 1940, the Periodic Table of the Elements has been expanded by nearly 20% through the synthesis and identification of the seventeen elements beyond uranium (atomic number 92). Since the discoverers have the duty and right to propose names, this has been done for each of these elements. These proposed names have been endorsed by IUPAC for the first eleven of these elements (atomic numbers 93-103, inclusive), and thus these can be considered to be the official names for these eleven elements. Official names for the next six elements (104—109) await sanction by IUPAC. Of these six elements, the name for element 104 remains under dispute, the name for element 105 seems to be generally acceptable, and the privilege of naming elements 106-109 has been assigned to designated teams of investigators on the basis of an investigation by an adjudicatory body, the Transfermium Working Group appointed by IUPAP and IUPAC.


Author(s):  
R. Herrera ◽  
A. Gómez

Computer simulations of electron diffraction patterns and images are an essential step in the process of structure and/or defect elucidation. So far most programs are designed to deal specifically with crystals, requiring frequently the space group as imput parameter. In such programs the deviations from perfect periodicity are dealt with by means of “periodic continuation”.However, for many applications involving amorphous materials, quasiperiodic materials or simply crystals with defects (including finite shape effects) it is convenient to have an algorithm capable of handling non-periodicity. Our program “HeGo” is an implementation of the well known multislice equations in which no periodicity assumption is made whatsoever. The salient features of our implementation are: 1) We made Gaussian fits to the atomic scattering factors for electrons covering the whole periodic table and the ranges [0-2]Å−1 and [2-6]Å−1.


Author(s):  
Michael D. Gordin

Dmitrii Mendeleev (1834–1907) is a name we recognize, but perhaps only as the creator of the periodic table of elements. Generally, little else has been known about him. This book is an authoritative biography of Mendeleev that draws a multifaceted portrait of his life for the first time. As the book reveals, Mendeleev was not only a luminary in the history of science, he was also an astonishingly wide-ranging political and cultural figure. From his attack on Spiritualism to his failed voyage to the Arctic and his near-mythical hot-air balloon trip, this is the story of an extraordinary maverick. The ideals that shaped his work outside science also led Mendeleev to order the elements and, eventually, to engineer one of the most fascinating scientific developments of the nineteenth century. This book is a classic work that tells the story of one of the world's most important minds.


2018 ◽  
Author(s):  
Alexander Bolano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document