In Vitro Culture of Human Hematopoietic Stem Cells in Serum Free Medium and Their Monitoring by Flow Cytometry

Author(s):  
Marc Cloutier ◽  
Christine Jobin ◽  
Carl Simard ◽  
Sonia Néron
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5198-5198
Author(s):  
Martin Klabusay ◽  
Zdenek Koristek ◽  
Jaroslava Vinklarkova ◽  
Jiri Mayer ◽  
Jiri Adler ◽  
...  

Abstract Background: Hematopoietic stem cells are able to regenerate hematopoiesis in all of its lineages. They are clinically used in transplantation of bone marrow or peripheral blood stem cells (PBSC) in patients with diagnosis of leukemia or lymphoma. While amount of hematopoietic stem cells is critical for the long-term engraftment, the amount of progenitor and precursor cells can influence time to engraftment, and it is critical for duration of neutropenia after transplantation. The methods of expansion of hematopoietic stem cells could reduce time to engraftment and decrease the risk of early post-transplant complications. Methods: Authors analyzed expansion of enriched hematopoietic stem cells (HSC), selected by immunomagnetic separation of Lin− cells from PBSC, in the culture of serum-free medium in vitro with all combinations of 5 cytokines (SCF, Flt-3-L, IL-3, IL-6, TPO) with and without G-CSF. Cell counts, morphology, immunophenotyping, and CFU-GM and CFU-Meg cultures were performed. Clinical transplantation protocol based on these results was developed. 10 patients with diagnosis of non-Hodgkin’s or Hodgkin’s lymphoma indicated for autologous transplantation, who signed the informed consent, were enrolled into the protocol. Except of standard PBSC graft, additional cells were collected, Lin− cells were selected by immunomagnetic separation, frozen and stored at Tissue bank. At day -14, Lin− cells were thawed and expanded in culture of serum-free medium with cytokines SCF, Flt-3-L, IL-3, IL-6 and G-CSF. Patients received high-dose chemotherapy regimen BEAM from day −7 to day −2. Progenitor cells expanded ex vivo in culture from Lin− cells were infused at day 0, following transplantation of PBSC. Patients were monitored, blood counts were performed, side effects were observed, and times to engraftment in granulocytes and platelets were calculated. Results: In experiments, the highest number of CFU-GM colonies was observed at day +14 with cytokine combination SCF+IL-3+Flt-3-L+ IL-6. The highest number of CFU-Meg colonies was observed in cytokine combination SCF+IL-3+TPO. G-CSF increased count and maturation of cells. Number of total cells grew 200 to 350 times at day +14. In the clinical protocol, 2 patients were excluded for technical reasons and 1 patient was excluded because of disease progression. 7 patients completed the protocol. The clinical procedure was free of serious adverse effects in all patients. Patients received doses from 5•107 to 3•109 cells. The group of patients was compared with historical controls - 142 patients treated at our department with autologous PBSC transplantation after BEAM regimen for diagnosis of lymphoma. Control group received higher average dose of CD34+ cells than experimental group: 7.7•106 / kg versus 6.6•106 / kg. Engraftment in granulocytes > 1000 / μl was shortened from 11 to 7.3 days in experimental group. Engraftment in platelets was not changed significantly (12 versus 11 days). Duration of neutropenia was shortened from 8 to 5.6 days. In patients, who received higher doses of infused cells > 2•109, average engraftment in granulocytes occurred at 6.3 days and duration of neutropenia was 5 days. Conclusions: HSC can be enriched from PBSC grafts, cultured and expanded ex vivo, and safely used in the cellular therapy protocols. The procedure resulted in significant shortening of critical period of neutropenia.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1623-1636 ◽  
Author(s):  
Chu-Chih Shih ◽  
Mickey C.-T. Hu ◽  
Jun Hu ◽  
Jeffrey Medeiros ◽  
Stephen J. Forman

Abstract We have developed a stromal-based in vitro culture system that facilitates ex vivo expansion of transplantable CD34+thy-1+ cells using long-term hematopoietic reconstitution in severe combined immunodeficient-human (SCID-hu) mice as an in vivo assay for transplantable human hematopoietic stem cells (HSCs). The addition of leukemia inhibitory factor (LIF) to purified CD34+ thy-1+ cells on AC6.21 stroma, a murine bone marrow–derived stromal cell line, caused expansion of cells with CD34+ thy-1+ phenotype. Addition of other cytokines, including interleukin-3 (IL-3), IL-6, granulocyte-macrophage colony-stimulating factor, and stem cell factor, to LIF in the cultures caused a 150-fold expansion of cells retaining the CD34+ thy-1+ phenotype. The ex vivo–expanded CD34+ thy-1+ cells gave rise to multilineage differentiation, including myeloid, T, and B cells, when transplanted into SCID-hu mice. Both murine LIF (cannot bind to human LIF receptor) and human LIF caused expansion of human CD34+ thy-1+ cells in vitro, suggesting action through the murine stroma. Furthermore, another human HSC candidate, CD34+ CD38− cells, shows a similar pattern of proliferative response. This suggests thatex vivo expansion of transplantable human stem cells under this in vitro culture system is a general phenomenon and not just specific for CD34+ thy-1+ cells.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1623-1636 ◽  
Author(s):  
Chu-Chih Shih ◽  
Mickey C.-T. Hu ◽  
Jun Hu ◽  
Jeffrey Medeiros ◽  
Stephen J. Forman

We have developed a stromal-based in vitro culture system that facilitates ex vivo expansion of transplantable CD34+thy-1+ cells using long-term hematopoietic reconstitution in severe combined immunodeficient-human (SCID-hu) mice as an in vivo assay for transplantable human hematopoietic stem cells (HSCs). The addition of leukemia inhibitory factor (LIF) to purified CD34+ thy-1+ cells on AC6.21 stroma, a murine bone marrow–derived stromal cell line, caused expansion of cells with CD34+ thy-1+ phenotype. Addition of other cytokines, including interleukin-3 (IL-3), IL-6, granulocyte-macrophage colony-stimulating factor, and stem cell factor, to LIF in the cultures caused a 150-fold expansion of cells retaining the CD34+ thy-1+ phenotype. The ex vivo–expanded CD34+ thy-1+ cells gave rise to multilineage differentiation, including myeloid, T, and B cells, when transplanted into SCID-hu mice. Both murine LIF (cannot bind to human LIF receptor) and human LIF caused expansion of human CD34+ thy-1+ cells in vitro, suggesting action through the murine stroma. Furthermore, another human HSC candidate, CD34+ CD38− cells, shows a similar pattern of proliferative response. This suggests thatex vivo expansion of transplantable human stem cells under this in vitro culture system is a general phenomenon and not just specific for CD34+ thy-1+ cells.


2010 ◽  
Vol 38 (4) ◽  
pp. 301-310.e2 ◽  
Author(s):  
Pernilla Eliasson ◽  
Matilda Rehn ◽  
Petter Hammar ◽  
Peter Larsson ◽  
Oksana Sirenko ◽  
...  

2018 ◽  
Vol 67 (3) ◽  
pp. 294-301 ◽  
Author(s):  
Carmen Rojas-Martínez ◽  
Roger I. Rodríguez-Vivas ◽  
Julio V. Figueroa Millán ◽  
Karla Y. Acosta Viana ◽  
Edwin J. Gutiérrez Ruíz ◽  
...  

2019 ◽  
Vol 380 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Chengjuan Qu ◽  
Maria Brohlin ◽  
Paul J Kingham ◽  
Peyman Kelk

AbstractThis study was aimed to investigate the effects of cGMP xeno-/serum-free medium (XSF, Irvine Scientific) on the properties of human dental pulp stem cells (DPSCs). DPSCs, from passage 2, were cultured in XSF or fetal bovine serum (FBS)-supplemented medium, and sub-cultured up to passage 8. Cumulative population doublings (PDs) and the number of colony-forming-units (CFUs) were determined. qRT-PCR, ELISA, and in vitro assays were used to assess angiogenic capacity. Flow cytometry was used to measure CD73, CD90, and CD105 expression. Differentiation into osteo-, adipo-, and chondrogenic cell lineages was performed. DPSCs showed more elongated morphology, a reduced rate of proliferation at later passages, and lower CFU counts in XSF compared with FBS. Expression of angiogenic factors at the gene and protein levels varied in the two media and with passage number, but cells grown in XSF had more in vitro angiogenic activity. The majority of early and late passage DPSCs cultured in XSF expressed CD73 and CD90. In contrast, the percentage of CD105 positive DPSCs in XSF medium was significantly lower with increased passage whereas the majority of cells cultured in FBS were CD105 positive. Switching XSF-cultured DPSCs to medium supplemented with human serum restored the expression of CD105. The tri-lineage differentiation of DPSCs cultured under XSF and FBS conditions was similar. We showed that despite reduced CD105 expression levels, DPSCs expanded in XSF medium maintained a functional MSC phenotype. Furthermore, restoration of CD105 expression is likely to occur upon in vivo transplantation, when cells are exposed to human serum.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rui Bai ◽  
Yun Chang ◽  
Amina Saleem ◽  
Fujian Wu ◽  
Lei Tian ◽  
...  

Abstract Introduction Spinal cord injury (SCI) is a neurological, medically incurable disorder. Human pluripotent stem cells (hPSCs) have the potential to generate neural stem/progenitor cells (NS/PCs), which hold promise in the treatment of SCI by transplantation. In our study, we aimed to establish a chemically defined culture system using serum-free medium and ascorbic acid (AA) to generate and expand long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) differentiated from hPSCs effectively and stably. Methods We induced human embryonic stem cells (hESCs)/induced PSCs (iPSCs) to neurospheres using a newly established in vitro induction system. Moreover, lt-NES cells were derived from hESC/iPSC-neurospheres using two induction systems, i.e., conventional N2 medium with gelatin-coated plates (coated) and N2+AA medium without pre-coated plates (AA), and were characterized by reverse transcription polymerase chain reaction (RT-PCR) analysis and immunocytochemistry staining. Subsequently, lt-NES cells were induced to neurons. A microelectrode array (MEA) recording system was used to evaluate the functionality of the neurons differentiated from lt-NES cells. Finally, the mechanism underlying the induction of lt-NES cells by AA was explored through RNA-seq and the use of inhibitors. Results HESCs/iPSCs were efficiently induced to neurospheres using a newly established induction system in vitro. lt-NES cells derived from hESC/iPSC-neurospheres using the two induction systems (coated vs. AA) both expressed the neural pluripotency-associated genes PAX6, NESTIN, SOX1, and SOX2. After long-term cultivation, we found that they both exhibited long-term expansion for more than a dozen generations while maintaining neuropluripotency. Moreover, the lt-NES cells retained the ability to differentiate into general functional neurons that express β-tubulin at high levels. We also demonstrated that AA promotes the generation and long-term expansion of lt-NES cells by promoting collagen synthesis via the MEK-ERK1/2 pathway. Conclusions This new chemically defined culture system was stable and effective regarding the generation and culture of lt-NES cells induced from hESCs/iPSCs using serum-free medium combined with AA. The lt-NES cells induced under this culture system maintained their long-term expansion and neural pluripotency, with the potential to differentiate into functional neurons. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document