Biomaterial Applications in the Adult Skeletal Muscle Satellite Cell Niche: Deliberate Control of Muscle Stem Cells and Muscle Regeneration in the Aged Niche

Author(s):  
Eric Jabart ◽  
Irina Conboy
2002 ◽  
Vol 62 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Dulce Papy-Garcia ◽  
Isabelle Barbosa ◽  
Arlette Duchesnay ◽  
Sihem Saadi ◽  
Jean-Pierre Caruelle ◽  
...  

2004 ◽  
Vol 166 (3) ◽  
pp. 347-357 ◽  
Author(s):  
Peter S. Zammit ◽  
Jon P. Golding ◽  
Yosuke Nagata ◽  
Valérie Hudon ◽  
Terence A. Partridge ◽  
...  

Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7−ve progeny destined for differentiation. Some of the Pax7+ve/MyoD−ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool.


Cell Cycle ◽  
2005 ◽  
Vol 4 (10) ◽  
pp. 1338-1341 ◽  
Author(s):  
Charlotte A. Collins ◽  
Terence A. Partridge

2004 ◽  
Vol 84 (1) ◽  
pp. 209-238 ◽  
Author(s):  
SOPHIE B. P. CHARGÉ ◽  
MICHAEL A. RUDNICKI

Chargé, Sophie B. P., and Michael A. Rudnicki. Cellular and Molecular Regulation of Muscle Regeneration. Physiol Rev 84: 209–238, 2004; 10.1152/physrev.00019.2003.—Under normal circumstances, mammalian adult skeletal muscle is a stable tissue with very little turnover of nuclei. However, upon injury, skeletal muscle has the remarkable ability to initiate a rapid and extensive repair process preventing the loss of muscle mass. Skeletal muscle repair is a highly synchronized process involving the activation of various cellular responses. The initial phase of muscle repair is characterized by necrosis of the damaged tissue and activation of an inflammatory response. This phase is rapidly followed by activation of myogenic cells to proliferate, differentiate, and fuse leading to new myofiber formation and reconstitution of a functional contractile apparatus. Activation of adult muscle satellite cells is a key element in this process. Muscle satellite cell activation resembles embryonic myogenesis in several ways including the de novo induction of the myogenic regulatory factors. Signaling factors released during the regenerating process have been identified, but their functions remain to be fully defined. In addition, recent evidence supports the possible contribution of adult stem cells in the muscle regeneration process. In particular, bone marrow-derived and muscle-derived stem cells contribute to new myofiber formation and to the satellite cell pool after injury.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 183 ◽  
Author(s):  
David Lee ◽  
Akshay Bareja ◽  
David Bartlett ◽  
James White

Skeletal muscle has remarkable regenerative capacity, relying on precise coordination between resident muscle stem cells (satellite cells) and the immune system. The age-related decline in skeletal muscle regenerative capacity contributes to the onset of sarcopenia, prolonged hospitalization, and loss of autonomy. Although several age-sensitive pathways have been identified, further investigation is needed to define targets of cellular dysfunction. Autophagy, a process of cellular catabolism, is emerging as a key regulator of muscle regeneration affecting stem cell, immune cell, and myofiber function. Muscle stem cell senescence is associated with a suppression of autophagy during key phases of the regenerative program. Macrophages, a key immune cell involved in muscle repair, also rely on autophagy to aid in tissue repair. This review will focus on the role of autophagy in various aspects of the regenerative program, including adult skeletal muscle stem cells, monocytes/macrophages, and corresponding age-associated dysfunction. Furthermore, we will highlight rejuvenation strategies that alter autophagy to improve muscle regenerative function.


2019 ◽  
Vol 20 (13) ◽  
pp. 3269 ◽  
Author(s):  
Lidan Zhang ◽  
Akiyoshi Uezumi ◽  
Takayuki Kaji ◽  
Kazutake Tsujikawa ◽  
Ditte Caroline Andersen ◽  
...  

Delta like non-canonical Notch ligand 1 (Dlk1) is a paternally expressed gene which is also known as preadipocyte factor 1 (Pref−1). The accumulation of adipocytes and expression of Dlk1 in regenerating muscle suggests a correlation between fat accumulation and Dlk1 expression in the muscle. Additionally, mice overexpressing Dlk1 show increased muscle weight, while Dlk1-null mice exhibit decreased body weight and muscle mass, indicating that Dlk1 is a critical factor in regulating skeletal muscle mass during development. The muscle regeneration process shares some features with muscle development. However, the role of Dlk1 in regeneration processes remains controversial. Here, we show that mesenchymal progenitors also known as adipocyte progenitors exclusively express Dlk1 during muscle regeneration. Eliminating developmental effects, we used conditional depletion models to examine the specific roles of Dlk1 in muscle stem cells or mesenchymal progenitors. Unexpectedly, deletion of Dlk1 in neither the muscle stem cells nor the mesenchymal progenitors affected the regenerative ability of skeletal muscle. In addition, fat accumulation was not increased by the loss of Dlk1. Collectively, Dlk1 plays essential roles in muscle development, but does not greatly impact regeneration processes and adipogenic differentiation in adult skeletal muscle regeneration.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Tadashi Yoshida ◽  
Sarah Galvez ◽  
Bashir M. Rezk ◽  
Laura Semprun-Prieto ◽  
Sergiy Sukhanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document