Erythropoietin and Neuroprotection in the Peripheral Nervous System: In Vivo Studies

Author(s):  
W. Marie Campana
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 846
Author(s):  
Gitishree Das ◽  
Han-Seung Shin ◽  
Rosa Tundis ◽  
Sandra Gonçalves ◽  
Ourlad Alzeus G. Tantengco ◽  
...  

Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.


2021 ◽  
Vol 42 ◽  
pp. e67649
Author(s):  
Marta Sánchez ◽  
Elena González-Burgos ◽  
Irene Iglesias ◽  
M. Pilar Gómez-Serranillos Cuadrado

Valeriana officinalis L. (Caprifoliaceae family) has been traditionally used to treat mild nervous tension and sleep problems. The basis of these activities are mainly attributed to valerenic acid through the modulation of the GABA receptor. Moreover, V. officinalis is claimed to have other biological activities such as cardiovascular benefits, anticancer, antimicrobial and spasmolytic.  The current review aims to update the biological and pharmacological studies (in vitro, in vivo and clinical trials) of V. officinalis and its major secondary metabolites in order to guide future research. Databases PubMed, Science Direct and Scopus were used for literature search including original papers written in English and published between 2014 and 2020. There have been identified 33 articles which met inclusion criteria. Most of these works were performed with V. officinalis extracts and only a few papers (in vitro and in vivo studies) evaluated the activity of isolated compounds (valerenic acid and volvalerenal acid K). In vitro studies focused on studying antioxidant and neuroprotective activity. In vivo studies and clinical trials mainly investigated activities on the nervous system (anticonvulsant activity, antidepressant, cognitive problems, anxiety and sleep disorders). Just few studies were focused on other different activities, highlight effects on symptoms of premenstrual and postmenopausal syndromes. Valeriana officinalis continues to be one of the medicinal plants most used by today's society for its therapeutic properties and whose biological and pharmacological activities continue to arouse great scientific interest as evidenced in recent publications. This review shows scientific evidence on traditional uses of V. officinalis on nervous system.


2019 ◽  
Vol 59 (5) ◽  
pp. 567-576 ◽  
Author(s):  
Stefanie Schreiber ◽  
Frank Schreiber ◽  
Cornelia Garz ◽  
Grazyna Debska‐Vielhaber ◽  
Anne Assmann ◽  
...  

2007 ◽  
Vol 81 (13) ◽  
pp. 6846-6857 ◽  
Author(s):  
B. Feierbach ◽  
M. Bisher ◽  
J. Goodhouse ◽  
L. W. Enquist

ABSTRACT The neurotropic alphaherpesviruses invade and spread in the nervous system in a directional manner between synaptically connected neurons. Until now, this property has been studied only in living animals and has not been accessible to in vitro analysis. In this study, we describe an in vitro system in which cultured peripheral nervous system neurons are separated from their neuron targets by an isolator chamber ring. Using pseudorabies virus (PRV), an alphaherpesvirus capable of transneuronal spread in neural circuits of many animals, we have recapitulated in vitro all known genetic requirements for retrograde and anterograde transneuronal spread as determined previously in vivo. We show that in vitro transneuronal spread requires intact axons and the presence of the viral proteins gE, gI, and Us9. We also show that transneuronal spread is dependent on the viral glycoprotein gB, which is required for membrane fusion, but not on gD, which is required for extracellular spread. We demonstrate ultrastructural differences between anterograde- and retrograde-traveling virions. Finally, we show live imaging of dynamic fluorescent virion components in axons and postsynaptic target neurons.


2017 ◽  
Author(s):  
Kim I Chisholm ◽  
Nikita Khovanov ◽  
Douglas M Lopes ◽  
Federica La Russa ◽  
Stephen B McMahon

AbstractGreater emphasis on the study of intact cellular networks in their physiological environment has led to rapid advances in intravital imaging in the central nervous system, while the peripheral system remains largely unexplored. To assess large networks of sensory neurons we selectively label primary afferents with GCaMP6s and visualise their functional responses in vivo to peripheral stimulation. We show that we are able to monitor simultaneously the activity of hundreds of sensory neurons with sensitivity sufficient to detect, in most cases, single action potentials with a typical rise time of around 200 milliseconds, and an exponential decay with a time constant of approximately 700 milliseconds. Using this sensitive technique we are able to show that large scale recordings demonstrate the recently disputed polymodality of nociceptive primary afferents with between 40-80% of thermally sensitive DRG neurons responding also to noxious mechanical stimulation. We also specifically assess the small population of peripheral cold fibres and demonstrate significant sensitisation to cooling after a model of sterile and persistent inflammation, with significantly increased sensitivity already at decreases of 5°C when compared to uninflamed responses. This not only reveals interesting new insights into the (patho)physiology of the peripheral nervous system but also demonstrates the sensitivity of this imaging technique to physiological changes in primary afferents.Significance StatementMost of our functional understanding of the peripheral nervous system has come from single unit recordings. However, the acquisition of such data is labour-intensive and usually ‘low yield’. Moreover, some questions are best addressed by studying populations of neurons. To this end we report on a system that monitors activity in hundreds of single sensory neurons simultaneously, with sufficient sensitivity to detect in most cases single action potentials. We use this technique to characterise nociceptor properties and demonstrate polymodality in the majority of neurons and their sensitization under inflammatory conditions. We therefore believe this approach will be very useful for the studies of the somatosensory system in general and pain in particular.


1992 ◽  
Vol 116 (6) ◽  
pp. 1455-1464 ◽  
Author(s):  
R Curtis ◽  
H J Stewart ◽  
S M Hall ◽  
G P Wilkin ◽  
R Mirsky ◽  
...  

Recently it has been demonstrated that the growth-associated protein GAP-43 is not confined to neurons but is also expressed by certain central nervous system glial cells in tissue culture and in vivo. This study has extended these observations to the major class of glial cells in the peripheral nervous system, Schwann cells. Using immunohistochemical techniques, we show that GAP-43 immunoreactivity is present in Schwann cell precursors and in mature non-myelin-forming Schwann cells both in vitro and in vivo. This immunoreactivity is shown by Western blotting to be a membrane-associated protein that comigrates with purified central nervous system GAP-43. Furthermore, metabolic labeling experiments demonstrate definitively that Schwann cells in culture can synthesize GAP-43. Mature myelin-forming Schwann cells do not express GAP-43 but when Schwann cells are removed from axonal contact in vivo by nerve transection GAP-43 expression is upregulated in nearly all Schwann cells of the distal stump by 4 wk after denervation. In contrast, in cultured Schwann cells GAP-43 is not rapidly upregulated in cells that have been making myelin in vivo. Thus the regulation of GAP-43 appears to be complex and different from that of other proteins associated with nonmyelin-forming Schwann cells such as N-CAM, glial fibrillary acidic protein, A5E3, and nerve growth factor receptor, which are rapidly upregulated in myelin-forming cells after loss of axonal contact. These observations suggest that GAP-43 may play a more general role in the nervous system than previously supposed.


2011 ◽  
Vol 229 (2) ◽  
pp. 494-501 ◽  
Author(s):  
G. Weise ◽  
T.C. Basse-Luesebrink ◽  
C. Wessig ◽  
P.M. Jakob ◽  
G. Stoll

Sign in / Sign up

Export Citation Format

Share Document