Light-Switchable Folding/Unfolding of the Collagen Triple Helix with Azobenzene-Containing Model Peptides

Author(s):  
Ulrike Kusebauch ◽  
Lisa Lorenz ◽  
Sergio A. Cadamuro ◽  
Hans-Jürgen Musiol ◽  
Martin O. Lenz ◽  
...  
2021 ◽  
Vol 22 (5) ◽  
pp. 2426
Author(s):  
Askhat Myngbay ◽  
Limara Manarbek ◽  
Steve Ludbrook ◽  
Jeannette Kunz

Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.


2014 ◽  
Vol 16 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Amanda M. Acevedo-Jake ◽  
Abhishek A. Jalan ◽  
Jeffrey D. Hartgerink

2020 ◽  
Author(s):  
Megan E Grund ◽  
Soo J Choi ◽  
Dudley H McNitt ◽  
Mariette Barbier ◽  
Gangqing Hu ◽  
...  

AbstractBacterial efflux pumps are an important pathogenicity trait because they extrude a variety of xenobiotics. Our laboratory previously identified in silico Burkholderia collagen-like protein 8 (Bucl8) in the Tier one select agents Burkholderia pseudomallei and Burkholderia mallei. We hypothesize that Bucl8, which contains two predicted tandem outer membrane efflux pump domains, is a component of a putative efflux pump. Unique to Bucl8, as compared to other outer membrane proteins, is the presence of an extended extracellular region containing a collagen-like (CL) domain and a non-collagenous C-terminus (Ct). Molecular modeling and circular dichroism spectroscopy with a recombinant protein, corresponding to this extracellular CL-Ct portion of Bucl8, demonstrated that it adopts a collagen triple helix, whereas functional assays screening for Bucl8 ligands identified binding to fibrinogen. Bioinformatic analysis of the bucl8 gene locus revealed it resembles a classical efflux-pump operon. The bucl8 gene is co-localized with downstream fusCDE genes encoding fusaric acid (FA) resistance, and with an upstream gene, designated as fusR, encoding a LysR-type transcriptional regulator. Using RT-qPCR, we defined the boundaries and transcriptional organization of the fusR-bucl8-fusCDE operon. We found exogenous FA induced bucl8 transcription over 80-fold in B. pseudomallei, while deletion of the entire bucl8 locus decreased the MIC of FA 4-fold in its isogenic mutant. We furthermore showed that the Bucl8 pump expressed in the heterologous Escherichia coli host confers FA resistance. On the contrary, the Bucl8 pump did not confer resistance to a panel of clinically-relevant antimicrobials in Burkholderia and E. coli. We finally demonstrated that deletion of the bucl8-locus drastically affects the growth of the mutant in L-broth. We determined that Bucl8 is a component of a novel tetrapartite efflux pump, which confers FA resistance, fibrinogen binding, and optimal growth.Author SummaryBurkholderia pseudomallei and Burkholderia mallei are highly infectious and multidrug resistant bacteria that are classified by the National Institute of Allergy and Infectious Diseases as Tier one select agents partly due to the intrinsic multidrug resistance associated with expression of the efflux pumps. To date, only few efflux pumps predicted in Burkholderia spp. have been studied in detail. In the current study we introduce Bucl8, an outer membrane component of an unreported putative efflux pump with a unique extended extracellular portion that forms a collagen triple helix and binds fibrinogen. We demonstrate Bucl8’s role in fusaric acid resistance by defining its operon via bioinformatic and transcriptional analyses, as well as by employing loss-of-function and gain-of-function genetic approaches. Our studies also implicate the Bucl8-associated pump in metabolic and physiologic homeostasis. Understanding how Bucl8 efflux pump contributes to Burkholderia pathology will foster development of pump inhibitors targeting transport mechanism or identifying potential surface-exposed vaccine targets.


2005 ◽  
Vol 281 (6) ◽  
pp. 3432-3438 ◽  
Author(s):  
Takaki Koide ◽  
Shinichi Asada ◽  
Yoshifumi Takahara ◽  
Yoshimi Nishikawa ◽  
Kazuhiro Nagata ◽  
...  

2018 ◽  
Vol 42 (20) ◽  
pp. 17115-17125 ◽  
Author(s):  
K. S. Bezerra ◽  
J. X. Lima Neto ◽  
J. I. N. Oliveira ◽  
E. L. Albuquerque ◽  
E. W. S. Caetano ◽  
...  

In this paper, quantum biochemistry methods have been used to describe important protein–protein interactions for the complex integrin–collagen.


Sign in / Sign up

Export Citation Format

Share Document