scholarly journals The Role of Collagen Triple Helix Repeat-Containing 1 Protein (CTHRC1) in Rheumatoid Arthritis

2021 ◽  
Vol 22 (5) ◽  
pp. 2426
Author(s):  
Askhat Myngbay ◽  
Limara Manarbek ◽  
Steve Ludbrook ◽  
Jeannette Kunz

Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.

Author(s):  
Askhat Myngbay ◽  
Limara Manarbek ◽  
Steve B. Ludbrook ◽  
Jeannette Kunz

Rheumatoid arthritis (RA) is a chronic autoimmune disease, causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients, compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and this is associated with cancer metastasis to the bone and poor prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression that may be linked to the pathogenic behavior of fibroblast-like synoviocytes, cartilage destruction, and bone erosion.


2021 ◽  
Author(s):  
Paridhi Latawa ◽  
Brianna Chrisman

Rheumatoid Arthritis (RA) is an inflammatory autoimmune disease that affects 23 million people worldwide. It is a clinically heterogeneous disorder characterized by the attack of inflammatory chemicals on the synovial tissue that lines joints. It is advantageous to develop effective, targeted treatments and identify specific diagnostic biomarkers for RA before extensive joint degradation, bone erosion, and cartilage destruction. Current modes of RA treatments have alleviated and notably halted the progression of RA. Despite this, not many patients reach low disease activity status after treatment, and a significant number of patients fail to respond to medication due to drug non-specificity. While the reasons for these rates remain unknown, the cellular and molecular signatures present in the synovial tissue for RA patients likely play a role in the varied treatment response. Thus, a drug that particularly targets specific genes and networks may have a significant effect in halting the progression of RA. This study evaluates and proposes potential drug targets through in silico mathematical modeling of various pathways of interest in RA. To understand how drugs interact with genes, we built a mathematical model with 30 two-gene and three-gene network interactions and analyzed the effect of 92 different perturbations to rate constants. We determined that inhibition of the LCK-CD4, VAV1-CD4, and MLT-ROR pathways could potentially serve as drug targets. We also found that increased activity of the DEC2-IL1β and the NF-κB-interleukin pathway and the decreased activity of the TNF-α-REV-ERB pathway could serve as diagnostic biomarkers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ilaria Mormile ◽  
Francesca Wanda Rossi ◽  
Nella Prevete ◽  
Francescopaolo Granata ◽  
Valentina Pucino ◽  
...  

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by a progressive symmetric inflammation of the joints resulting in bone erosion and cartilage destruction with a progressive loss of function and joint deformity. An increased number of findings support the role of innate immunity in RA: many innate immune mechanisms are responsible for producing several cytokines and chemokines involved in RA pathogenesis, such as Tumor Necrosis Factor (TNF)-α, interleukin (IL)-6, and IL-1. Pattern recognition receptors (PRRs) play a crucial role in modulating the activity of the innate arm of the immune response. We focused our attention over the years on the expression and functions of a specific class of PRR, namely formyl peptide receptors (FPRs), which exert a key function in both sustaining and resolving the inflammatory response, depending on the context and/or the agonist. We performed a broad review of the data available in the literature on the role of FPRs and their ligands in RA. Furthermore, we queried a publicly available database collecting data from 90 RA patients with different clinic features to evaluate the possible association between FPRs and clinic-pathologic parameters of RA patients.


2021 ◽  
Author(s):  
Zehui Wang ◽  
Weiyong Zhang ◽  
Shouxia Li ◽  
Dingli Chen ◽  
Lei Wang ◽  
...  

Background: This study explored the clinical role of lncRNA MEG3 in rheumatoid arthritis (RA) management. Materials & methods: Totally, 191 active RA patients were enrolled, and their lncRNA MEG3 expressions in peripheral blood monoclonal cells were detected. Results: LncRNA MEG3 expression was downregulated, and it negatively correlated with lesion joints, inflammation and disease activity in RA patients. Moreover, lncRNA MEG3 expression was increased during treatment; meanwhile its increment correlated with treatment response and remission. Conclusion: LncRNA MEG3 may serve as a potential biomarker for monitoring treatment efficacy in RA management.


Arthritis ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad Javad Fattahi ◽  
Abbas Mirshafiey

Rheumatoid arthritis (RA) is a chronic, autoimmune, and complex inflammatory disease leading to bone and cartilage destruction, whose cause remains obscure. Accumulation of genetic susceptibility, environmental factors, and dysregulated immune responses are necessary for mounting this self-reacting disease. Inflamed joints are infiltrated by a heterogeneous population of cellular and soluble mediators of the immune system, such as T cells, B cells, macrophages, cytokines, and prostaglandins (PGs). Prostaglandins are lipid inflammatory mediators derived from the arachidonic acid by multienzymatic reactions. They both sustain homeostatic mechanisms and mediate pathogenic processes, including the inflammatory reaction. They play both beneficial and harmful roles during inflammation, according to their site of action and the etiology of the inflammatory response. With respect to the role of PGs in inflammation, they can be effective mediators in the pathophysiology of RA. Thus the use of agonists or antagonists of PG receptors may be considered as a new therapeutic protocol in RA. In this paper, we try to elucidate the role of PGs in the immunopathology of RA.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 880 ◽  
Author(s):  
Yen-Ju Lin ◽  
Martina Anzaghe ◽  
Stefan Schülke

Rheumatoid arthritis (RA) is an autoimmune disease that involves multiple joints bilaterally. It is characterized by an inflammation of the tendon (tenosynovitis) resulting in both cartilage destruction and bone erosion. While until the 1990s RA frequently resulted in disability, inability to work, and increased mortality, newer treatment options have made RA a manageable disease. Here, great progress has been made in the development of disease-modifying anti-rheumatic drugs (DMARDs) which target inflammation and thereby prevent further joint damage. The available DMARDs are subdivided into (1) conventional synthetic DMARDs (methotrexate, hydrochloroquine, and sulfadiazine), (2) targeted synthetic DMARDs (pan-JAK- and JAK1/2-inhibitors), and (3) biologic DMARDs (tumor necrosis factor (TNF)-α inhibitors, TNF-receptor (R) inhibitors, IL-6 inhibitors, IL-6R inhibitors, B cell depleting antibodies, and inhibitors of co-stimulatory molecules). While DMARDs have repeatedly demonstrated the potential to greatly improve disease symptoms and prevent disease progression in RA patients, they are associated with considerable side-effects and high financial costs. This review summarizes our current understanding of the underlying pathomechanism, diagnosis of RA, as well as the mode of action, clinical benefits, and side-effects of the currently available DMARDs.


2008 ◽  
Vol 372 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Alfonso De Simone ◽  
Luigi Vitagliano ◽  
Rita Berisio

2020 ◽  
Vol 11 (7) ◽  
pp. 6251-6264
Author(s):  
Jing Wu ◽  
Kai-Jian Fan ◽  
Qi-Shan Wang ◽  
Bing-Xin Xu ◽  
Qing Cai ◽  
...  

Collagen-induced arthritis (CIA) is a widely used animal model for studying rheumatoid arthritis (RA), which manifests serious joint dysfunction, progressive bone erosion and articular cartilage destruction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lichuang Huang ◽  
Shaoqi Hu ◽  
Meiyu Shao ◽  
Xin Wu ◽  
Jida Zhang ◽  
...  

Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to cartilage destruction and bone erosion. In-depth exploration of the pathogenesis of RA and the development of effective therapeutic drugs are of important clinical and social value. Herein, we explored the medicinal value of Cornus officinalis Sieb. and Paeonia lactiflora Pall. in RA treatment using a rat model of collagen-induced arthritis (CIA). We compared the therapeutic effect of Cornus officinalis and Paeonia lactiflora with that of their main active compounds, ursolic acid and paeoniflorin, respectively. We demonstrated that the combination of Cornus officinalis and Paeonia lactiflora effectively inhibited the release of factors associated with oxidative stress and inflammation during RA, therein ameliorating the symptoms and suppressing the progression of RA. We further showed that the underlying mechanisms may be related to the regulation of apoptosis in synovial tissues, and we investigated the potential involvement of AMPK-mediated mitochondrial dynamics in the therapeutic action of the two drugs and their active components.


Sign in / Sign up

Export Citation Format

Share Document