collagen mimetic peptides
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Nolan R. McGrady ◽  
Silvia Pasini ◽  
Robert O. Baratta ◽  
Brian J. Del Buono ◽  
Eric Schlumpf ◽  
...  

Optic neuropathies are a major cause of visual disabilities worldwide, causing irreversible vision loss through the degeneration of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Chief among these is glaucoma, in which sensitivity to intraocular pressure (IOP) leads to RGC axon dysfunction followed by outright degeneration of the optic projection. Current treatments focus entirely on lowering IOP through topical hypotensive drugs, surgery to facilitate aqueous fluid outflow, or both. Despite this investment in time and resources, many patients continue to lose vision, underscoring the need for new therapeutics that target neurodegeneration directly. One element of progression in glaucoma involves matrix metalloproteinase (MMP) remodeling of the collagen-rich extracellular milieu of RGC axons as they exit the retina through the optic nerve head. Thus, we investigated the ability of collagen mimetic peptides (CMPs) representing various single strand fractions of triple helix human type I collagen to protect RGC axons in an inducible model of glaucoma. First, using dorsal root ganglia maintained in vitro on human type I collagen, we found that multiple CMPs significantly promote neurite outgrowth (+35%) compared to vehicle following MMP-induced fragmentation of the α1(I) and α2(I) chains. We then applied CMP to adult mouse eyes in vivo following microbead occlusion to elevate IOP and determined its influence on anterograde axon transport to the superior colliculus, the primary RGC projection target in rodents. In glaucoma models, sensitivity to IOP causes early degradation in axon function, including anterograde transport from retina to central brain targets. We found that CMP treatment rescued anterograde transport following a 3-week +50% elevation in IOP. These results suggest that CMPs generally may represent a novel therapeutic to supplement existing treatments or as a neuroprotective option for patients who do not respond to IOP-lowering regimens.


MRS Bulletin ◽  
2021 ◽  
Author(s):  
Lorena Ruiz-Rodriguez ◽  
Philip Loche ◽  
Lise Thornfeldt Hansen ◽  
Roland R. Netz ◽  
Peter Fratzl ◽  
...  

Abstract Native collagen molecules usually contract upon dehydration, but the details of their interaction with water are poorly understood. Previous molecular modeling studies indicated a spatially inhomogeneous response, with a combination of local axial expansion and contraction. Such sequence-dependent effects are difficult to study with native collagen. In this article, we use collagen-mimetic peptides (CMPs) to investigate the effect of osmotic pressure on several collagen-mimetic sequences. Synchrotron x-ray diffraction combined with molecular dynamics simulations shows that CMPs pack differently depending on osmotic pressure and exhibit changes in the helical rise per residue of individual molecules. Infrared spectroscopy reveals that osmotic pressure affects the stability of the triple helix through changes in triple helix-stabilizing hydrogen bonds. Surprisingly, CMPs with the canonical collagen sequence glycine–proline–hydroxyproline are found to elongate upon dehydration, while sequence modifications are able to reverse this tendency. This strongly suggests that the overall contraction of native collagen molecules is not programmed into the canonical sequence but is specific to local amino acids that substitute for proline or hydroxyproline along the protein chain. Collagen is an essential protein in mammalian extracellular tissues and a better understanding of its mechanical function is important both from a materials science and from a biomedical viewpoint. Recently, collagen has been shown to contract along the fibre direction when subjected to osmotic stress, a process that could play important roles in strengthening bone and in developing tissue tension during extracellular matrix development. The present work uses collagen-like short peptides to show that the canonical collagen sequence is not responsible for this contraction. The conclusion is that the collagen amino acid sequence must have evolved to include guest sequences within the canonical glycine-proline-hydroxyproline repeat that provide the observed contractility. Impact statement Collagen is an essential protein in mammalian extracellular tissues and a better understanding of its mechanical function is important both from a materials science and from a biomedical viewpoint. Recently, collagen has been shown to contract along the fibre direction when subjected to osmotic stress, a process that could play important roles in strengthening bone and in developing tissue tension during extracellular matrix development. The present work uses collagen-like short peptides to show that the canonical collagen sequence is not responsible for this contraction. The conclusion is that the collagen amino acid sequence must have evolved to include guest sequences within the canonical glycine-proline-hydroxyproline that provide the observed contractility. Graphic Abstract


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 154
Author(s):  
Devindraan S/O Sirkkunan ◽  
Farina Muhamad ◽  
Belinda Pingguan-Murphy

The use of neural scaffolds with a highly defined microarchitecture, fabricated with standard techniques such as electrospinning and microfluidic spinning, requires surgery for their application to the site of injury. To circumvent the risk associated with aciurgy, new strategies for treatment are sought. This has led to an increase in the quantity of research into injectable hydrogels in recent years. However, little research has been conducted into controlling the building blocks within these injectable hydrogels to produce similar scaffolds with a highly defined microarchitecture. “Magnetic particle string” and biomimetic amphiphile self-assembly are some of the methods currently available to achieve this purpose. Here, we developed a “magnetic anchor” method to improve the orientation of collagen fibres within injectable 3D scaffolds. This procedure uses GMNP (gold magnetic nanoparticle) “anchors” capped with CMPs (collagen mimetic peptides) that “chain” them to collagen fibres. Through the application of a magnetic field during the gelling process, these collagen fibres are aligned accordingly. It was shown in this study that the application of CMP functionalised GMNPs in a magnetic field significantly improves the alignment of the collagen fibres, which, in turn, improves the orientation of PC12 neurites. The growth of these neurite extensions, which were shown to be significantly longer, was also improved. The PC12 cells grown in collagen scaffolds fabricated using the “magnetic anchor” method shows comparable cellular viability to that of the untreated collagen scaffolds. This capability of remote control of the alignment of fibres within injectable collagen scaffolds opens up new strategic avenues in the research for treating debilitating neural tissue pathologies.


2021 ◽  
Vol 22 (9) ◽  
pp. 4533
Author(s):  
Tomoyuki Koga ◽  
Shinya Kingetsu ◽  
Nobuyuki Higashi

Self-assembly of artificial peptides has been widely studied for constructing nanostructured materials, with numerous potential applications in the nanobiotechnology field. Herein, we report the synthesis and hierarchical self-assembly of collagen-mimetic peptides (CMPs) bearing various aromatic groups at the N-termini, including 2-naphthyl, 1-naphtyl, anthracenyl, and pyrenyl groups, into nanofibers. The CMPs (R-(GPO)n: n > 4) formed a triple helix structure in water at 4 °C, as confirmed via CD analyses, and their conformations were more stable with increasing hydrophobicity of the terminal aromatic group and peptide chain length. The resulting pre-organized triple helical CMPs showed diverse self-assembly into highly ordered nanofibers, reflecting their slight differences in hydrophobic/hydrophilic balance and configuration of aromatic templates. TEM analysis demonstrated that 2Np-CMPn (n = 6 and 7) and Py-CMP6 provided well-developed natural collagen-like nanofibers and An-CMPn (n = 5–7) self-assembled into rod-like micelle fibers. On the other hand, 2Np-CMP5 and 1Np-CMP6 were unable to form nanofibers under the same conditions. Furthermore, the Py-CMP6 nanofiber was found to encapsulate a guest hydrophobic molecule, Nile red, and exhibited unique emission behavior based on the specific nanostructure. In addition to the ability of CMPs to bind small molecules, their controlled self-assembly enables their versatile utilization in drug delivery and wavelength-conversion nanomaterials.


2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Yujia Xu ◽  
Michele Kirchner

Since their first synthesis in the late 1960s, collagen mimetic peptides (CMPs) have been used as a molecular tool to study collagen, and as an approach to develop novel collagen mimetic biomaterials. Collagen, a major extracellular matrix (ECM) protein, plays vital roles in many physiological and pathogenic processes. Applications of CMPs have advanced our understanding of the structure and molecular properties of a collagen triple helix—the building block of collagen—and the interactions of collagen with important molecular ligands. The accumulating knowledge is also paving the way for developing novel CMPs for biomedical applications. Indeed, for the past 50 years, CMP research has been a fast-growing, far-reaching interdisciplinary field. The major development and achievement of CMPs were documented in a few detailed reviews around 2010. Here, we provided a brief overview of what we have learned about CMPs—their potential and their limitations. We focused on more recent developments in producing heterotrimeric CMPs, and CMPs that can form collagen-like higher order molecular assemblies. We also expanded the traditional view of CMPs to include larger designed peptides produced using recombinant systems. Studies using recombinant peptides have provided new insights on collagens and promoted progress in the development of collagen mimetic fibrillar self-assemblies.


2020 ◽  
Author(s):  
Julian Kessler ◽  
Grace Kang ◽  
Zhao Qin ◽  
Helen Kang ◽  
Frank Whitby ◽  
...  

The triple-helical structure of collagen, responsible for collagen’s remarkable biological and mechanical properties, has inspired both basic and applied research in synthetic peptide mimetics for decades. Since non-proline amino acids weaken the triple helix, the cyclic structure of proline has been considered necessary, and functional collagen mimetic peptides (CMPs) with diverse sidechains have been difficult to produce. Here we show that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, allowing synthesis of thermally stable triple-helical CMPs with unprecedented sidechain diversity. We found that the N-glys stabilize the triple helix by sterically promoting the preorganization of individual CMP chains into the polyproline-II helix conformation. Our findings were supported by the crystal structures of two atomic-resolution N-gly-containing CMPs, as well as experimental and computational studies spanning more than 30 N-gly-containing peptides. We demonstrated that N-gly sidechains with diverse exotic moieties including a ‘click’-able alkyne and a photo-sensitive sidechain can be incorporated into stable triple helices, enabling functional applications such spatio-temporal control of cell adhesion and migration on a gelatin matrix. The folding principles discovered in this study open up opportunities for a new generation of collagen mimetic therapeutics and materials with extraordinary properties.


2020 ◽  
Author(s):  
Julian Kessler ◽  
Grace Kang ◽  
Zhao Qin ◽  
Helen Kang ◽  
Frank Whitby ◽  
...  

The triple-helical structure of collagen, responsible for collagen’s remarkable biological and mechanical properties, has inspired both basic and applied research in synthetic peptide mimetics for decades. Since non-proline amino acids weaken the triple helix, the cyclic structure of proline has been considered necessary, and functional collagen mimetic peptides (CMPs) with diverse sidechains have been difficult to produce. Here we show that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, allowing synthesis of thermally stable triple-helical CMPs with unprecedented sidechain diversity. We found that the N-glys stabilize the triple helix by sterically promoting the preorganization of individual CMP chains into the polyproline-II helix conformation. Our findings were supported by the crystal structures of two atomic-resolution N-gly-containing CMPs, as well as experimental and computational studies spanning more than 30 N-gly-containing peptides. We demonstrated that N-gly sidechains with diverse exotic moieties including a ‘click’-able alkyne and a photo-sensitive sidechain can be incorporated into stable triple helices, enabling functional applications such spatio-temporal control of cell adhesion and migration on a gelatin matrix. The folding principles discovered in this study open up opportunities for a new generation of collagen mimetic therapeutics and materials with extraordinary properties.


Author(s):  
Andrew T. Rowley ◽  
Vijaykumar S. Meli ◽  
Natalie J. Wu-Woods ◽  
Esther Y. Chen ◽  
Wendy F. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document