triple helix formation
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 9)

H-INDEX

50
(FIVE YEARS 3)

2020 ◽  
Author(s):  
Mario Flores ◽  
Ivan Ovcharenko

Abstract Background:Recent studies have drawn attention to transcribed enhancers (trEs) as important regulatory elements of gene expression; however, their characteristics and mechanisms of action remain poorly understood. Results:We profiled the characteristics of trEs and obtained insights into their mechanisms of action. We found that trEs harbor functional duality related to bimodal sequence composition. TrEs are composed of nonoverlapping cores and flanking regions (flanks): cores function as regular enhancers, while flanks transcribe enhancer RNAs (eRNAs) that can potentially regulate the expression of their target genes in trans. Cores are evolutionarily conserved and compact, while flanks are significantly longer. We observed that approximately 25% of eRNAs transcribed from the flanks likely contribute to trans DNA:RNA triple helix formation, while another 10% likely employ classical mechanisms of RNA-based regulation. We found that the majority of human enhancers are not transcribed, and trEs are strikingly different from regular enhancers in their functional characteristics. In addition, we found evidence for trEs exhibiting functional duality in regulatory locus encapsulation (RLE), effectively providing localized control over the spread of gene expression upregulation by trE cores and other locus enhancers. Conclusions:In summary, our results advocate for enhancer transcription being an uncommon mechanism of gene regulation, and the duality of transcribed enhancer function being a product of additive, not overlapping, DNA sequence encryption.


2020 ◽  
Vol 295 (29) ◽  
pp. 9959-9973 ◽  
Author(s):  
Ngoc-Duc Doan ◽  
Azade S. Hosseini ◽  
Agata A. Bikovtseva ◽  
Michelle S. Huang ◽  
Andrew S. DiChiara ◽  
...  

Intracellular collagen assembly begins with the oxidative folding of ∼30-kDa C-terminal propeptide (C-Pro) domains. Folded C-Pro domains then template the formation of triple helices between appropriate partner strands. Numerous C-Pro missense variants that disrupt or delay triple-helix formation are known to cause disease, but our understanding of the specific proteostasis defects introduced by these variants remains immature. Moreover, it is unclear whether or not recognition and quality control of misfolded C-Pro domains is mediated by recognizing stalled assembly of triple-helical domains or by direct engagement of the C-Pro itself. Here, we integrate biochemical and cellular approaches to illuminate the proteostasis defects associated with osteogenesis imperfecta-causing mutations within the collagen-α2(I) C-Pro domain. We first show that “C-Pro-only” constructs recapitulate key aspects of the behavior of full-length Colα2(I) constructs. Of the variants studied, perhaps the most severe assembly defects are associated with C1163R C-Proα2(I), which is incapable of forming stable trimers and is retained within cells. We find that the presence or absence of an unassembled triple-helical domain is not the key feature driving cellular retention versus secretion. Rather, the proteostasis network directly engages the misfolded C-Pro domain itself to prevent secretion and initiate clearance. Using MS-based proteomics, we elucidate how the endoplasmic reticulum (ER) proteostasis network differentially engages misfolded C1163R C-Proα2(I) and targets it for ER-associated degradation. These results provide insights into collagen folding and quality control with the potential to inform the design of proteostasis network-targeted strategies for managing collagenopathies.


ACS Omega ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 1679-1687
Author(s):  
Ibrahim Sayoh ◽  
David A. Rusling ◽  
Tom Brown ◽  
Keith R. Fox

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 595 ◽  
Author(s):  
Char ◽  
Padilla ◽  
Campos ◽  
Pepczynska ◽  
Díaz-Calderón ◽  
...  

The aim of this study was to develop and characterize a sprayable edible coating using salmon gelatin (SG) and its stabilization by photopolymerization using riboflavin (Rf). Suspensions of SG with Rf at pH values of 5.0 and 8.5 were exposed for 2 min to visible light (VL) and ultraviolet (UV) light and further characterized to determine structural changes of the different gelatin formulations. Rheology analysis showed that at pH 5, the loss modulus (G’’) was higher that the storage modulus (G’) for crosslinked samples (VL and UV light). However, at pH 8.5 G’ values increased over G’’, showing a strong crosslinking effect. Interestingly both moduli did not intersect at any point and their maximum values did not change upon cooling with respect to the gelatin suspension without light exposure, demonstrating that triple helix formation was not affected by the reaction. In fact, neither the gelation temperature nor the enthalpy values were significantly affected. Viscosity measurements confirmed the hydrogel formation using VL, showing higher viscosity values after exposure at increasing temperatures. Transmittance (T%) measurements showed an increase in T% in the suspensions after VL exposure, with only a 10% decrease compared to SG without riboflavin. For validation, the coating was sprayed in fresh salmon fillets, showing a 37% delay in spoilage and reduced weight loss. Therefore, photopolymerization of low viscosity gelatins would allow to manage viscoelasticity of the biomaterial stabilizing it as coating and preventing the deterioration of salmon fillets.


2019 ◽  
Vol 47 (14) ◽  
pp. 7213-7222 ◽  
Author(s):  
Charlotte N Kunkler ◽  
Jacob P Hulewicz ◽  
Sarah C Hickman ◽  
Matthew C Wang ◽  
Phillip J McCown ◽  
...  

AbstractRecent studies suggest noncoding RNAs interact with genomic DNA, forming an RNA•DNA–DNA triple helix that regulates gene expression. However, base triplet composition of pyrimidine motif RNA•DNA–DNA triple helices is not well understood beyond the canonical U•A–T and C•G–C base triplets. Using native gel-shift assays, the relative stability of 16 different base triplets at a single position, Z•X–Y (where Z = C, U, A, G and X–Y = A–T, G–C, T–A, C–G), in an RNA•DNA–DNA triple helix was determined. The canonical U•A–T and C•G–C base triplets were the most stable, while three non-canonical base triplets completely disrupted triple-helix formation. We further show that our RNA•DNA–DNA triple helix can tolerate up to two consecutive non-canonical A•G–C base triplets. Additionally, the RNA third strand must be at least 19 nucleotides to form an RNA•DNA–DNA triple helix but increasing the length to 27 nucleotides does not increase stability. The relative stability of 16 different base triplets in DNA•DNA–DNA and RNA•RNA–RNA triple helices was distinctly different from those in RNA•DNA–DNA triple helices, showing that base triplet stability depends on strand composition being DNA and/or RNA. Multiple factors influence the stability of triple helices, emphasizing the importance of experimentally validating formation of computationally predicted triple helices.


Gels ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 4 ◽  
Author(s):  
Lisa Rebers ◽  
Tobias Granse ◽  
Günter Tovar ◽  
Alexander Southan ◽  
Kirsten Borchers

Chemically cross-linkable gelatin methacryloyl (GM) derivatives are getting increasing attention regarding biomedical applications. Thus, thorough investigations are needed to achieve full understanding and control of the physico-chemical behavior of these promising biomaterials. We previously introduced gelatin methacryloyl acetyl (GMA) derivatives, which can be used to control physical network formation (solution viscosity, sol-gel transition) independently from chemical cross-linking by variation of the methacryloyl-to-acetyl ratio. It is known that temperature dependent physical network formation significantly influences the mechanical properties of chemically cross-linked GM hydrogels. We investigated the temperature sensitivity of GM derivatives with different degrees of modification (GM2, GM10), or similar degrees of modification but different methacryloyl contents (GM10, GM2A8). Rheological analysis showed that the low modified GM2 forms strong physical gels upon cooling while GM10 and GM2A8 form soft or no gels. Yet, compression testing revealed that all photo cross-linked GM(A) hydrogels were stronger if cooling was applied during hydrogel preparation. We suggest that the hydrophobic methacryloyl and acetyl residues disturb triple helix formation with increasing degree of modification, but additionally form hydrophobic structures, which facilitate chemical cross-linking.


Sign in / Sign up

Export Citation Format

Share Document