Infection-Induced Porcine Ex Vivo Corneal Wound Model to Study the Efficacy of Herpes Simplex Virus-1 Entry and Replication Inhibitors

Author(s):  
Tejabhiram Yadavalli ◽  
Raghuram Koganti ◽  
Deepak Shukla
2021 ◽  
Author(s):  
nydia De La Cruz ◽  
Maureen Moeckel ◽  
Lisa Wirtz ◽  
Katharina Sunaoglu ◽  
Wolfram Malter ◽  
...  

Herpes simplex virus 1 (HSV-1) enters its human host via the skin or mucosa. The open question is how the virus invades this highly protective tissue in vivo to approach its receptors in the epidermis and initiate infection. Here, we performed ex vivo infection studies in human skin to investigate how susceptible the epidermis and dermis are to HSV-1 and whether wounding facilitates viral invasion. Upon ex vivo infection of complete skin, only sample edges demonstrated infected cells. After removal of the dermis, HSV 1 efficiently invaded the basal layer, and from there, gained access to suprabasal layers supporting a high susceptibility of the epidermis. In contrast, only single infected cells were detected in the papillary layer of the separated dermis. Interestingly, after wounding, nearly no infection of the epidermis was observed via the skin surface. However, if the wounding of the skin samples led to breaks through the dermis, HSV-1 infected mainly keratinocytes via the wounded dermis. The application of latex beads revealed only occasional entry via the wounded dermis, however, facilitated penetration via the wounded skin surface. Thus, we suggest that the wounded human skin surface allows particle penetration but still provides barriers that prevent HSV 1 invasion.


2021 ◽  
Author(s):  
Lisa Wirtz ◽  
Nydia C. De La Cruz ◽  
Maureen Möckel ◽  
Dagmar Knebel-Mörsdorf

Herpes simplex virus 1 (HSV-1) invades its human host via the skin and mucosa and initiates infection in the epithelium. While human and murine epidermis are highly susceptible to HSV-1, we recently observed rare infected cells in the human dermis and only minor infection efficiency in murine dermis upon ex vivo infection. Here, we investigated why cells in the dermis are so inefficiently infected and explored potential differences between murine and human dermal fibroblasts. In principle, primary fibroblasts are highly susceptible to HSV-1, however, we found a delayed infection onset in human compared to murine cells. Intriguingly, only a minor delayed onset of infection was evident in collagen-embedded compared to unembedded human fibroblasts although expression of the receptor nectin-1 dropped after collagen-embedding. This finding is in contrast to previous observations with murine fibroblasts where collagen-embedding delayed infection. The application of latex beads revealed limited penetration in the dermis which was more pronounced in human compared to murine dermis supporting the species-specific differences already observed for HSV-1 invasion. Our results suggest that the distinct organization of human and murine dermis contribute to the presence and accessibility of the HSV-1 receptors as well as to the variable barrier function of the extracellular matrix. These contributions, in turn, give rise to the inefficient viral access to cells in the dermis while dermal fibroblasts in culture are well infected. Importance Dermal fibroblasts are exposed to HSV-1 upon invasion in skin during in vivo infection. Thus, fibroblasts represent a widely used experimental tool to understand virus-host cell interactions and are highly susceptible in culture. The spectrum of fibroblasts’ characteristics in their in vivo environment, however, clearly differs from the observations under cell culture conditions implying putative variations in virus-cell interactions. This becomes evident when ex vivo infection studies in murine as well as human dermis revealed the rather inefficient penetration of HSV-1 in the tissue and uptake in the dermal fibroblasts. Here, we initiated studies to explore the contributions of receptor presence and accessibility to efficient infection of dermal fibroblasts. Our results strengthen the heterogeneity of murine and human dermis and imply that the interplay between dermal barrier function and receptor presence determine how well HSV-1 penetrates the dermis.


2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Katharina Thier ◽  
Philipp Petermann ◽  
Elena Rahn ◽  
Daniel Rothamel ◽  
Wilhelm Bloch ◽  
...  

ABSTRACT Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo, we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor.


Hepatology ◽  
1995 ◽  
Vol 21 (3) ◽  
pp. 752-759 ◽  
Author(s):  
Bing Lu ◽  
Sanjeev Gupta ◽  
Howard Federoff

2014 ◽  
Vol 89 (1) ◽  
pp. 262-274 ◽  
Author(s):  
Philipp Petermann ◽  
Katharina Thier ◽  
Elena Rahn ◽  
Frazer J. Rixon ◽  
Wilhelm Bloch ◽  
...  

ABSTRACTSkin keratinocytes represent a primary entry site for herpes simplex virus 1 (HSV-1)in vivo. The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) act as efficient receptors for both serotypes of HSV and are sufficient for disease development mediated by HSV-2 in mice. How HSV-1 enters skin and whether both nectin-1 and HVEM are involved are not known. We addressed the impact of nectin-1 during entry of HSV-1 into murine epidermis and investigated the putative contribution of HVEM. Usingex vivoinfection of murine epidermis, we showed that HSV-1 entered the basal keratinocytes of the epidermis very efficiently. In nectin-1-deficient epidermis, entry was strongly reduced. Almost no entry was observed, however, in nectin-1-deficient keratinocytes grown in culture. This observation correlated with the presence of HVEM on the keratinocyte surface in epidermis and with the lack of HVEM expression in nectin-1-deficient primary keratinocytes. Our results suggest that nectin-1 is the primary receptor in epidermis, while HVEM has a more limited role. For primary murine keratinocytes, on which nectin-1 acts as a single receptor, electron microscopy suggested that HSV-1 can enter both by direct fusion with the plasma membrane and via endocytic vesicles. Thus, we concluded that nectin-1 directs internalization into keratinocytes via alternative pathways. In summary, HSV-1 entry into epidermis was shown to strongly depend on the presence of nectin-1, but the restricted presence of HVEM can potentially replace nectin-1 as a receptor, illustrating the flexibility employed by HSV-1 to efficiently invade tissuein vivo.IMPORTANCEHerpes simplex virus (HSV) can cause a range of diseases in humans, from uncomplicated mucocutaneous lesions to life-threatening infections. The skin is one target tissue of HSV, and the question of how the virus overcomes the protective skin barrier and penetrates into the tissue to reach its receptors is still open. Previous studies analyzing entry into cells grownin vitrorevealed nectin-1 and HVEM as HSV receptors. To explore the contributions of nectin-1 and HVEM to entry into a natural target tissue, we established anex vivoinfection model. Using nectin-1- or HVEM-deficient mice, we demonstrated the distinct involvement of nectin-1 and HVEM for HSV-1 entry into epidermis and characterized the internalization pathways. Such advances in understanding the involvement of receptors in tissue are essential preconditions for unraveling HSV invasion of skin, which in turn will allow the development of antiviral reagents.


2016 ◽  
Vol 54 (2) ◽  
pp. 141-149
Author(s):  
Feng Lan ◽  
Xiang Dong Wang ◽  
Hans J. Nauwynck ◽  
Gabriele Holtappels ◽  
Luo Zhang ◽  
...  

Background: We aimed to elucidate possible differences in antiviral defense in chronic rhinosinusitis with nasal polyps (CRSwNP) mucosal tissue compared to healthy mucosal tissue (HMT) upon herpes simplex virus 1 (HSV1) exposure. Methodology: HMT and CRSwNP samples were infected with HSV1. We visualized the virus location by immunofluorescence and monitored invasion by a score. The mediators Interferon (IFN)-α, IFN-β, IFN-λ, IFN-γ, Interleukin (IL)-6, IL-1β, Tumor necrosis factor (TNF)-α, IL-17, IL-5, IL-10 were measured in culture supernatants at baseline and at 24 h, 48 h and 72 h after virus incubation. Results: CRSwNP mucosal tissue showed a significant deficit in IFN-γ and IL-17 release within 24 to 72 hours after infection in comparison to HMT, at the same time releasing significantly more pro-inflammatory cytokines including IL-1β and TNF-α. These findings were associated with significantly higher viral invasion scores at 48 and 72 h in CRSwNP mucosa compared to those for the HMT. Conclusions: We demonstrate for the first time in a human ex-vivo mucosal model that the inadequate response of CRSwNP may be associated with a deeper intrusion of viruses into the mucosal tissue, and may contribute to more and longer symptoms upon acute infection, but also to the persistence of inflammation in CRSwNP tissue.


Sign in / Sign up

Export Citation Format

Share Document