Establishing a Custom-Fit Data-Independent Acquisition Method for Label-Free Proteomics

Author(s):  
Britta Eggers ◽  
Martin Eisenacher ◽  
Katrin Marcus ◽  
Julian Uszkoreit
2020 ◽  
Vol 48 (14) ◽  
pp. e83-e83 ◽  
Author(s):  
Shisheng Wang ◽  
Wenxue Li ◽  
Liqiang Hu ◽  
Jingqiu Cheng ◽  
Hao Yang ◽  
...  

Abstract Mass spectrometry (MS)-based quantitative proteomics experiments frequently generate data with missing values, which may profoundly affect downstream analyses. A wide variety of imputation methods have been established to deal with the missing-value issue. To date, however, there is a scarcity of efficient, systematic, and easy-to-handle tools that are tailored for proteomics community. Herein, we developed a user-friendly and powerful stand-alone software, NAguideR, to enable implementation and evaluation of different missing value methods offered by 23 widely used missing-value imputation algorithms. NAguideR further evaluates data imputation results through classic computational criteria and, unprecedentedly, proteomic empirical criteria, such as quantitative consistency between different charge-states of the same peptide, different peptides belonging to the same proteins, and individual proteins participating protein complexes and functional interactions. We applied NAguideR into three label-free proteomic datasets featuring peptide-level, protein-level, and phosphoproteomic variables respectively, all generated by data independent acquisition mass spectrometry (DIA-MS) with substantial biological replicates. The results indicate that NAguideR is able to discriminate the optimal imputation methods that are facilitating DIA-MS experiments over those sub-optimal and low-performance algorithms. NAguideR further provides downloadable tables and figures supporting flexible data analysis and interpretation. NAguideR is freely available at http://www.omicsolution.org/wukong/NAguideR/ and the source code: https://github.com/wangshisheng/NAguideR/.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mukul K. Midha ◽  
David S. Campbell ◽  
Charu Kapil ◽  
Ulrike Kusebauch ◽  
Michael R. Hoopmann ◽  
...  

Abstract Data-independent acquisition (DIA) mass spectrometry, also known as Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH), is a popular label-free proteomics strategy to comprehensively quantify peptides/proteins utilizing mass spectral libraries to decipher inherently multiplexed spectra collected linearly across a mass range. Although there are many spectral libraries produced worldwide, the quality control of these libraries is lacking. We present the DIALib-QC (DIA library quality control) software tool for the systematic evaluation of a library’s characteristics, completeness and correctness across 62 parameters of compliance, and further provide the option to improve its quality. We demonstrate its utility in assessing and repairing spectral libraries for correctness, accuracy and sensitivity.


2018 ◽  
Vol 115 (21) ◽  
pp. E4767-E4776 ◽  
Author(s):  
Xiaomeng Shen ◽  
Shichen Shen ◽  
Jun Li ◽  
Qiang Hu ◽  
Lei Nie ◽  
...  

Reproducible quantification of large biological cohorts is critical for clinical/pharmaceutical proteomics yet remains challenging because most prevalent methods suffer from drastically declined commonly quantified proteins and substantially deteriorated quantitative quality as cohort size expands. MS2-based data-independent acquisition approaches represent tremendous advancements in reproducible protein measurement, but often with limited depth. We developed IonStar, an MS1-based quantitative approach enabling in-depth, high-quality quantification of large cohorts by combining efficient/reproducible experimental procedures with unique data-processing components, such as efficient 3D chromatographic alignment, sensitive and selective direct ion current extraction, and stringent postfeature generation quality control. Compared with several popular label-free methods, IonStar exhibited far lower missing data (0.1%), superior quantitative accuracy/precision [∼5% intragroup coefficient of variation (CV)], the widest protein abundance range, and the highest sensitivity/specificity for identifying protein changes (<5% false altered-protein discovery) in a benchmark sample set (n = 20). We demonstrated the usage of IonStar by a large-scale investigation of traumatic injuries and pharmacological treatments in rat brains (n = 100), quantifying >7,000 unique protein groups (>99.8% without missing data across the 100 samples) with a low false discovery rate (FDR), two or more unique peptides per protein, and high quantitative precision. IonStar represents a reliable and robust solution for precise and reproducible protein measurement in large cohorts.


Author(s):  
Sarah J. Parker ◽  
Ronald J. Holewinski ◽  
Irina Tchernyshyov ◽  
Vidya Venkatraman ◽  
Laurie Parker ◽  
...  

2016 ◽  
Vol 11 (4) ◽  
pp. 795-812 ◽  
Author(s):  
Ute Distler ◽  
Jörg Kuharev ◽  
Pedro Navarro ◽  
Stefan Tenzer

2015 ◽  
Vol 14 (11) ◽  
pp. 4581-4593 ◽  
Author(s):  
Aivett Bilbao ◽  
Ying Zhang ◽  
Emmanuel Varesio ◽  
Jeremy Luban ◽  
Caterina Strambio-De-Castillia ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christoph N Schlaffner ◽  
Konstantin Kahnert ◽  
Jan Muntel ◽  
Ruchi Chauhan ◽  
Bernhard Y Renard ◽  
...  

Improvements in LC-MS/MS methods and technology have enabled the identification of thousands of modified peptides in a single experiment. However, protein regulation by post-translational modifications (PTMs) is not binary, making methods to quantify the modification extent crucial to understanding the role of PTMs. Here, we introduce FLEXIQuant-LF, a software tool for large-scale identification of differentially modified peptides and quantification of their modification extent without knowledge of the types of modifications involved. We developed FLEXIQuant-LF using label-free quantification of unmodified peptides and robust linear regression to quantify the modification extent of peptides. As proof of concept, we applied FLEXIQuant-LF to data-independent-acquisition (DIA) data of the anaphase promoting complex/cyclosome (APC/C) during mitosis. The unbiased FLEXIQuant-LF approach to assess the modification extent in quantitative proteomics data provides a better understanding of the function and regulation of PTMs. The software is available at https://github.com/SteenOmicsLab/FLEXIQuantLF.


Author(s):  
Anja Holtz ◽  
Nathan Basisty ◽  
Birgit Schilling

AbstractPost-translational modifications (PTMs) occur dynamically, allowing cells to quickly respond to changes in the environment. Lysine residues can be targeted by several modifications including acylations (acetylation, succinylation, malonylation, glutarylation, and others), methylation, ubiquitination, and other modifications. One of the most efficient methods for the identification of post-translational modifications is utilizing immunoaffinity enrichment followed by high-resolution mass spectrometry. This workflow can be coupled with comprehensive data-independent acquisition (DIA) mass spectrometry to be a high-throughput, label-free PTM quantification approach. Below we describe a detailed protocol to process tissue by homogenization and proteolytically digest proteins, followed by immunoaffinity enrichment of lysine-acetylated peptides to identify and quantify relative changes of acetylation comparing different conditions.


2019 ◽  
Author(s):  
Dorte B. Bekker-Jensen ◽  
Ana Martínez del Val ◽  
Sophia Steigerwald ◽  
Patrick Rüther ◽  
Kyle Fort ◽  
...  

ABSTRACTState-of-the-art proteomics-grade mass spectrometers can measure peptide precursors and their fragments with ppm mass accuracy at sequencing speeds of tens of peptides per second with attomolar sensitivity. Here we describe a compact and robust quadrupole-orbitrap mass spectrometer equipped with a front-end High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Interface. The performance of the Orbitrap Exploris 480 mass spectrometer is evaluated in data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes in combination with FAIMS. We demonstrate that different compensation voltages (CVs) for FAIMS are optimal for DDA and DIA, respectively. Combining DIA with FAIMS using single CVs, the instrument surpasses 2500 unique peptides identified per minute. This enables quantification of >5000 proteins with short online LC gradients delivered by the Evosep One LC system allowing acquisition of 60 samples per day. The raw sensitivity of the instrument is evaluated by analyzing 5 ng of a HeLa digest from which >1000 proteins were reproducibly identified with 5 minute LC gradients using DIA-FAIMS. To demonstrate the versatility of the instrument we recorded an organ-wide map of proteome expression across 12 rat tissues quantified by tandem mass tags and label-free quantification using DIA with FAIMS to a depth of >10,000 proteins.


Sign in / Sign up

Export Citation Format

Share Document