Modeling the 3D Genome Using Hi-C and Nuclear Lamin-Genome Contacts

2021 ◽  
pp. 337-352
Author(s):  
Jonas Paulsen ◽  
Philippe Collas
Keyword(s):  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Jonas Paulsen ◽  
Monika Sekelja ◽  
Anja R. Oldenburg ◽  
Alice Barateau ◽  
Nolwenn Briand ◽  
...  

Abstract Current three-dimensional (3D) genome modeling platforms are limited by their inability to account for radial placement of loci in the nucleus. We present Chrom3D, a user-friendly whole-genome 3D computational modeling framework that simulates positions of topologically-associated domains (TADs) relative to each other and to the nuclear periphery. Chrom3D integrates chromosome conformation capture (Hi-C) and lamin-associated domain (LAD) datasets to generate structure ensembles that recapitulate radial distributions of TADs detected in single cells. Chrom3D reveals unexpected spatial features of LAD regulation in cells from patients with a laminopathy-causing lamin mutation. Chrom3D is freely available on github.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1881
Author(s):  
Prim B. Singh ◽  
Stepan N. Belyakin ◽  
Petr P. Laktionov

The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories where they regulate chromatin template-dependent processes. Domains are more than 100 kb in size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission yeast to human, with an expansion in size and number in mammals. Some of the likely functions of domains/complexes include silencing of the donor mating type region in fission yeast, preservation of DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift away from the monomer as the “unit of incompatibility” that determines the sign and magnitude of the Flory–Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal “clutch”, consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of “clutches” in a domain/complex. Our approach could provide an additional tool for understanding the biophysics of the 3D genome.


Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Ryzhkova ◽  
Alena Taskina ◽  
Anna Khabarova ◽  
Veniamin Fishman ◽  
Nariman Battulin

AbstractGeneration of mature red blood cells, consisting mainly of hemoglobin, is a remarkable example of coordinated action of various signaling networks. Chromatin condensation is an essential step for terminal erythroid differentiation and subsequent nuclear expulsion in mammals. Here, we profiled 3D genome organization in the blood cells from ten species belonging to different vertebrate classes. Our analysis of contact maps revealed a striking absence of such 3D interaction patterns as loops or TADs in blood cells of all analyzed representatives. We also detect large-scale chromatin rearrangements in blood cells from mammals, birds, reptiles and amphibians: their contact maps display strong second diagonal pattern, representing an increased frequency of long-range contacts, unrelated to TADs or compartments. This pattern is completely atypical for interphase chromosome structure. We confirm that these principles of genome organization are conservative in vertebrate erythroid cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marleen M. Nieboer ◽  
Luan Nguyen ◽  
Jeroen de Ridder

AbstractOver the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. Here, we introduce svMIL2, an improved version of our Multiple Instance Learning-based method to study the effect of somatic non-coding SVs disrupting boundaries of TADs and CTCF loops in 1646 cancer genomes. We demonstrate that svMIL2 predicts pathogenic non-coding SVs with an average AUC of 0.86 across 12 cancer types, and identifies non-coding SVs affecting well-known driver genes. The disruption of active (super) enhancers in open chromatin regions appears to be a common mechanism by which non-coding SVs exert their pathogenicity. Finally, our results reveal that the contribution of pathogenic non-coding SVs as opposed to driver SNVs may highly vary between cancers, with notably high numbers of genes being disrupted by pathogenic non-coding SVs in ovarian and pancreatic cancer. Taken together, our machine learning method offers a potent way to prioritize putatively pathogenic non-coding SVs and leverage non-coding SVs to identify driver genes. Moreover, our analysis of 1646 cancer genomes demonstrates the importance of including non-coding SVs in cancer diagnostics.


Sign in / Sign up

Export Citation Format

Share Document