topologically associated domains
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 95)

H-INDEX

10
(FIVE YEARS 5)

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Maria Tsagiopoulou ◽  
Nikolaos Pechlivanis ◽  
Maria Christina Maniou ◽  
Fotis Psomopoulos

ABSTRACT The integration of multi-omics data can greatly facilitate the advancement of research in Life Sciences by highlighting new interactions. However, there is currently no widespread procedure for meaningful multi-omics data integration. Here, we present a robust framework, called InterTADs, for integrating multi-omics data derived from the same sample, and considering the chromatin configuration of the genome, i.e. the topologically associating domains (TADs). Following the integration process, statistical analysis highlights the differences between the groups of interest (normal versus cancer cells) relating to (i) independent and (ii) integrated events through TADs. Finally, enrichment analysis using KEGG database, Gene Ontology and transcription factor binding sites and visualization approaches are available. We applied InterTADs to multi-omics datasets from 135 patients with chronic lymphocytic leukemia (CLL) and found that the integration through TADs resulted in a dramatic reduction of heterogeneity compared to individual events. Significant differences for individual events and on TADs level were identified between patients differing in the somatic hypermutation status of the clonotypic immunoglobulin genes, the core biological stratifier in CLL, attesting to the biomedical relevance of InterTADs. In conclusion, our approach suggests a new perspective towards analyzing multi-omics data, by offering reasonable execution time, biological benchmarking and potentially contributing to pattern discovery through TADs.


2022 ◽  
Author(s):  
Huang Zhen ◽  
Luohao Xu ◽  
Cheng Cai ◽  
Yitao Zhou ◽  
Jing Liu ◽  
...  

The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding into the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention or rearrangements between descendants of whole genome duplications (WGDs), which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its 3D chromatin architecture at the onset of zygotic activation, and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes, and provide high-quality references for understanding the mechanisms of chordate functional genome evolution.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Matthew Halvorsen ◽  
Ruth Huh ◽  
Nikolay Oskolkov ◽  
Jia Wen ◽  
Sergiu Netotea ◽  
...  

2021 ◽  
Author(s):  
Yoshinori Kohwi ◽  
Mari Grange ◽  
Hunter W Richards ◽  
Ya-Chen Liang ◽  
Cheng-Ming Chuong ◽  
...  

Mammalian genomes are organized by multi-layered chromatin folding. Whether and how three-dimensional genome organization contributes to cell-type specific transcription remains unclear. Here we uncover genome architecture formed by specialized sequences, base-unpairing regions (BURs), bound to a nuclear architectural protein, SATB1. SATB1 regulates cell-type specific transcription that underlies changes in cellular phenotypes. We developed a modified ChIP-seq protocol that stringently purifies genomic DNA only with its directly-associated proteins and unmasked previously-hidden BURs as direct SATB1 targets genome-wide. These SATB1-bound BURs are mutually exclusive from CTCF binding sites, and SATB1 is dispensable for CTCF/cohesion-mediated topologically associated domains (TADs). Instead, BURs largely overlap with lamina associated domains (LADs), and the fraction of BURs tethered to the SATB1 protein network in the nuclear interior is cell type-dependent. Our results reveal TAD-independent chromatin folding mediated by BUR sequences, which serve as genome architecture landmarks targeted by SATB1, to regulate cell-type specific gene expression.


Author(s):  
Anastassiia Vertii

The exponential development of methods investigating different levels of spatial genome organization leads to the appreciation of the chromatin landscape's contribution to gene regulation and cell fate. Multiple levels of 3D chromatin organization include chromatin loops and topologically associated domains, followed by euchromatin and heterochromatin compartments, chromatin domains associated with nuclear bodies, and culminate with the chromosome territories. 3D chromatin architecture is exposed to multiple factors such as cell division and stress, including but not limited to mechanical, inflammatory, and environmental challenges. How exactly the stress exposure shapes the chromatin landscape is a new and intriguing area of research. In this mini-review, the developments that motivate the exploration of this field are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jack Wootton ◽  
Evi Soutoglou

Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing. In addition, the local chromatin environment defined by non-canonical histone variants, histone post-translational modifications (PTMs) and enrichment of factors such as heterochromatin protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of replicative damage. Lastly, we will cover how the spatial organisation of stalled replication forks facilitates the resolution of replication stress.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan Yin ◽  
Huizhong Fan ◽  
Botong Zhou ◽  
Yibo Hu ◽  
Guangyi Fan ◽  
...  

AbstractMuntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), female and male M. crinifrons (2n = 8/9) and a contig-level genome for M. gongshanensis (2n = 8/9). These high-quality genomes combined with Hi-C data allowed us to reveal the evolution of 3D chromatin architectures during mammalian chromosome evolution. We find that the chromosome fusion events of muntjac species did not alter the A/B compartment structure and topologically associated domains near the fusion sites, but new chromatin interactions were gradually established across the fusion sites. The recently borne neo-Y chromosome of M. crinifrons, which underwent male-specific inversions, has dramatically restructured chromatin compartments, recapitulating the early evolution of canonical mammalian Y chromosomes. We also reveal that a complex structure containing unique centromeric satellite, truncated telomeric and palindrome repeats might have mediated muntjacs’ recurrent chromosome fusions. These results provide insights into the recurrent chromosome tandem fusion in muntjacs, early evolution of mammalian sex chromosomes, and reveal how chromosome rearrangements can reshape the 3D chromatin regulatory conformations during species evolution.


2021 ◽  
Vol 22 (23) ◽  
pp. 12713
Author(s):  
Alejandra Damián ◽  
Raluca Oancea Ionescu ◽  
Marta Rodríguez de Alba ◽  
Alejandra Tamayo ◽  
María José Trujillo-Tiebas ◽  
...  

Inversions are structural variants that are generally balanced. However, they could lead to gene disruptions or have positional effects leading to diseases. Mutations in the NHS gene cause Nance-Horan syndrome, an X-linked disorder characterised by congenital cataracts and dental anomalies. Here, we aimed to characterise a balanced pericentric inversion X(p22q27), maternally inherited, in a child with syndromic bilateral cataracts by breakpoint mapping using whole-genome sequencing (WGS). 30× Illumina paired-end WGS was performed in the proband, and breakpoints were confirmed by Sanger sequencing. EdU assays and FISH analysis were used to assess skewed X-inactivation patterns. RNA expression of involved genes in the breakpoint boundaries was evaluated by droplet-digital PCR. We defined the breakpoint position of the inversion at Xp22.13, with a 15 bp deletion, disrupting the unusually large intron 1 of the canonical NHS isoform, and also perturbing topologically-associated domains (TADs). Moreover, a microhomology region of 5 bp was found on both sides. RNA analysis confirmed null and reduced NHS expression in the proband and his unaffected mother, respectively. In conclusion, we report the first chromosomal inversion disrupting NHS, fine-mapped by WGS. Our data expand the clinical spectrum and the pathogenic mechanisms underlying the NHS defects.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5860
Author(s):  
Concetta Federico ◽  
Francesca Bruno ◽  
Denise Ragusa ◽  
Craig S. Clements ◽  
Desiree Brancato ◽  
...  

The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.


Sign in / Sign up

Export Citation Format

Share Document