Assessment of Larval Locomotor Activity for Developmental Neurotoxicity Screening

Author(s):  
Bridgett N. Hill ◽  
Kayla D. Coldsnow ◽  
Deborah L. Hunter ◽  
Joan M. Hedge ◽  
David Korest ◽  
...  
Author(s):  
Alessandro Atzei ◽  
Ingrid Jense ◽  
Edwin P. Zwart ◽  
Jessica Legradi ◽  
Bastiaan J. Venhuis ◽  
...  

Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.


2010 ◽  
Vol 196 ◽  
pp. S219
Author(s):  
I. Waalkens-Berendsen ◽  
C. De Esch ◽  
H. Van Der Linde ◽  
D. De Groot ◽  
R. Willemsen ◽  
...  

2010 ◽  
Vol 32 (4) ◽  
pp. 460-471 ◽  
Author(s):  
Ingrid W.T. Selderslaghs ◽  
Jef Hooyberghs ◽  
Wim De Coen ◽  
Hilda E. Witters

2020 ◽  
Vol 19 (5) ◽  
pp. 336
Author(s):  
Luiza Minato Sagrillo ◽  
Viviane Nogueira De Zorzi ◽  
Luiz Fernando Freire Royes ◽  
Michele Rechia Fighera ◽  
Beatriz Da Silva Rosa Bonadiman ◽  
...  

Physical exercise has been shown to be an important modulator of the antioxidant system and neuroprotective in several diseases and treatments that affect the central nervous system. In this sense, the present study aimed to evaluate the effect of physical exercise in dynamic balance, motor coordination, exploratory locomotor activity and in the oxidative and immunological balance of rats treated with vincristine (VCR). For that, 40 adult rats were divided into two groups: exercise group (6 weeks of swimming, 1h/day, 5 days/week, with overload of 5% of body weight) and sedentary group. After training, rats were treated with 0.5 mg/kg of vincristine sulfate for two weeks or with the same dose of 0.9% NaCl. The behavioral tests were conducted 1 and 7 days after each dose of VCR. On day 15 we carried out the biochemical analyzes of the cerebellum. The physical exercise was able to protect against the loss of dynamic balance and motor coordination and, had effect per se in the exploratory locomotor activity, and neutralize oxidative stress, damage DNA and immune damage caused by VCR up to 15 days after the end of the training protocol. In conclusion, we observed that previous physical training protects of the damage motor induced by vincristine.Key-words: exercise, oxidative stress, neuroprotection, cerebellum.


Sign in / Sign up

Export Citation Format

Share Document