Biolistic Inoculation of Fruit Trees with Full-Length Infectious cDNA Clones of RNA Viruses

Author(s):  
Yinzi Li ◽  
Aiming Wang
1998 ◽  
Vol 36 (9) ◽  
pp. 647-656 ◽  
Author(s):  
Chye-Fong Liew ◽  
Chong-Jin Goh ◽  
Chiang-Shiong Loh ◽  
Saw-Hoon Lim

1998 ◽  
Vol 72 (1) ◽  
pp. 380-387 ◽  
Author(s):  
J. J. M. Meulenberg ◽  
J. N. A. Bos-de Ruijter ◽  
R. van de Graaf ◽  
G. Wensvoort ◽  
R. J. M. Moormann

ABSTRACT The 5′-terminal end of the genomic RNA of the Lelystad virus isolate (LV) of porcine reproductive and respiratory syndrome virus was determined. To construct full-length cDNA clones, the 5′-terminal sequence was ligated to cDNA clones covering the complete genome of LV. When RNA that was transcribed in vitro from these full-length cDNA clones was transfected into BHK-21 cells, infectious LV was produced and secreted. The virus was rescued by passage to porcine alveolar lung macrophages or CL2621 cells. When infectious transcripts were transfected to porcine alveolar lung macrophages or CL2621 cells, no infectious virus was produced due to the poor transfection efficiency of these cells. The growth properties of the viruses produced by BHK-21 cells transfected with infectious transcripts of LV cDNA resembled the growth properties of the parental virus from which the cDNA was derived. Two nucleotide changes leading to a unique PacI restriction site directly downstream of the ORF7 gene were introduced in the genome-length cDNA clone. The virus recovered from this mutated cDNA clone retained the PacI site, which confirmed the de novo generation of infectious LV from cloned cDNA. These results indicate that the infectious clone of LV enables us to mutagenize the viral genome at specific sites and that it will therefore be useful for detailed molecular characterization of the virus, as well as for the development of a safe and effective live vaccine for use in pigs.


BioTechniques ◽  
2004 ◽  
Vol 36 (4) ◽  
pp. 690-700 ◽  
Author(s):  
Jia Qian Wu ◽  
Angela M. Garcia ◽  
Steven Hulyk ◽  
Anna Sneed ◽  
Carla Kowis ◽  
...  

2020 ◽  
Vol 276 ◽  
pp. 197790
Author(s):  
Zheng-Nan Li ◽  
Wilhelm Jelkmann ◽  
Ping-ping Sun ◽  
Lei Zhang

2000 ◽  
Vol 74 (7) ◽  
pp. 3149-3155 ◽  
Author(s):  
Mei Huang ◽  
Dora Chin-Yen Koh ◽  
Li-Juan Weng ◽  
Min-Li Chang ◽  
Yun-Kiam Yap ◽  
...  

ABSTRACT The complete nucleotide sequence of hibiscus chlorotic ringspot virus (HCRSV) was determined. The genomic RNA (gRNA) is 3,911 nucleotides long and has the potential to encode seven viral proteins in the order of 28 (p28), 23 (p23), 81 (p81), 8 (p8), 9 (p9), 38 (p38), and 25 (p25) kDa. Excluding two unique open reading frames (ORFs) encoding p23 and p25, the ORFs encode proteins with high amino acid similarity to those of carmoviruses. In addition to gRNA, two 3′-coterminated subgenomic RNA (sgRNA) species were identified. Full-length cDNA clones derived from gRNA and sgRNA were constructed under the control of a T7 promoter. Both capped and uncapped transcripts derived from the full-length genomic cDNA clone were infectious. In vitro translation and mutagenesis assays confirmed that all the predicted ORFs except the ORF encoding p8 are translatable, and the two novel ORFs (those encoding p23 and p25) may be functionally indispensable for the viral infection cycle. Based on virion morphology and genome organization, we propose that HCRSV be classified as a new member of the genus Carmovirus in familyTombusviridae.


Viruses ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 368 ◽  
Author(s):  
Maximilian Münster ◽  
Anna Płaszczyca ◽  
Mirko Cortese ◽  
Christopher Neufeldt ◽  
Sarah Goellner ◽  
...  

The Zika virus (ZIKV) has recently attracted major research interest as infection was unexpectedly associated with neurological manifestations in developing foetuses and with Guillain-Barré syndrome in infected adults. Understanding the underlying molecular mechanisms requires reverse genetic systems, which allow manipulation of infectious cDNA clones at will. In the case of flaviviruses, to which ZIKV belongs, several reports have indicated that the construction of full-length cDNA clones is difficult due to toxicity during plasmid amplification in Escherichia coli. Toxicity of flaviviral cDNAs has been linked to the activity of cryptic prokaryotic promoters within the region encoding the structural proteins leading to spurious transcription and expression of toxic viral proteins. Here, we employ an approach based on in silico prediction and mutational silencing of putative promoters to generate full-length cDNA clones of the historical MR766 strain and the contemporary French Polynesian strain H/PF/2013 of ZIKV. While for both strains construction of full-length cDNA clones has failed in the past, we show that our approach generates cDNA clones that are stable on single bacterial plasmids and give rise to infectious viruses with properties similar to those generated by other more complex assembly strategies. Further, we generate luciferase and fluorescent reporter viruses as well as sub-genomic replicons that are fully functional and suitable for various research and drug screening applications. Taken together, this study confirms that in silico prediction and silencing of cryptic prokaryotic promoters is an efficient strategy to generate full-length cDNA clones of flaviviruses and reports novel tools that will facilitate research on ZIKV biology and development of antiviral strategies.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Megan M. Angelini ◽  
Marzieh Akhlaghpour ◽  
Benjamin W. Neuman ◽  
Michael J. Buchmeier

ABSTRACTCoronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6.IMPORTANCEAlthough the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.


Sign in / Sign up

Export Citation Format

Share Document