spurious transcription
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

2020 ◽  
Vol 48 (21) ◽  
pp. 12151-12168
Author(s):  
Hong-Yeoul Ryu ◽  
Dejian Zhao ◽  
Jianhui Li ◽  
Dan Su ◽  
Mark Hochstrasser

Abstract Histones are substrates of the SUMO (small ubiquitin-like modifier) conjugation pathway. Several reports suggest histone sumoylation affects transcription negatively, but paradoxically, our genome-wide analysis shows the modification concentrated at many active genes. We find that trans-tail regulation of histone-H2B ubiquitylation and H3K4 di-methylation potentiates subsequent histone sumoylation. Consistent with the known control of the Set3 histone deacetylase complex (HDAC) by H3K4 di-methylation, histone sumoylation directly recruits the Set3 complex to both protein-coding and noncoding RNA (ncRNA) genes via a SUMO-interacting motif in the HDAC Cpr1 subunit. The altered gene expression profile caused by reducing histone sumoylation matches well to the profile in cells lacking Set3. Histone H2B sumoylation and the Set3 HDAC coordinately suppress cryptic ncRNA transcription initiation internal to mRNA genes. Our results reveal an elaborate co-transcriptional histone crosstalk pathway involving the consecutive ubiquitylation, methylation, sumoylation and deacetylation of histones, which maintains transcriptional fidelity by suppressing spurious transcription.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Damien Mornico ◽  
Chung-Chau Hon ◽  
Mikael Koutero ◽  
Christian Weber ◽  
Jean-Yves Coppee ◽  
...  

AbstractNatural antisense transcripts (NAT) have been reported in prokaryotes and eukaryotes. While the functions of most reported NATs remain unknown, their potentials in regulating the transcription of their counterparts have been speculated. Entamoeba histolytica, which is a unicellular eukaryotic parasite, has a compact protein-coding genome with very short intronic and intergenic regions. The regulatory mechanisms of gene expression in this compact genome are under-described. In this study, by genome-wide mapping of RNA-Seq data in the genome of E. histolytica, we show that a substantial fraction of its protein-coding genes (28%) has significant transcription on their opposite strand (i.e. NAT). Intriguingly, we found the location of transcription start sites or polyadenylation sites of NAT are determined by the specific motifs encoded on the opposite strand of the gene coding sequences, thereby providing a compact regulatory system for gene transcription. Moreover, we demonstrated that NATs are globally up-regulated under various environmental conditions including temperature stress and pathogenicity. While NATs do not appear to be consequences of spurious transcription, they may play a role in regulating gene expression in E. histolytica, a hypothesis which needs to be tested.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ngoc Tu Le ◽  
Yoshiko Harukawa ◽  
Saori Miura ◽  
Damian Boer ◽  
Akira Kawabe ◽  
...  

2020 ◽  
Vol 48 (9) ◽  
pp. 4891-4901 ◽  
Author(s):  
Emily A Warman ◽  
Shivani S Singh ◽  
Alicia G Gubieda ◽  
David C Grainger

Abstract RNA polymerases initiate transcription at DNA sequences called promoters. In bacteria, the best conserved promoter feature is the AT-rich -10 element; a sequence essential for DNA unwinding. Further elements, and gene regulatory proteins, are needed to recruit RNA polymerase to the -10 sequence. Hence, -10 elements cannot function in isolation. Many horizontally acquired genes also have a high AT-content. Consequently, sequences that resemble the -10 element occur frequently. As a result, foreign genes are predisposed to spurious transcription. However, it is not clear how RNA polymerase initially recognizes such sequences. Here, we identify a non-canonical promoter element that plays a key role. The sequence, itself a short AT-tract, resides 5 base pairs upstream of otherwise cryptic -10 elements. The AT-tract alters DNA conformation and enhances contacts between the DNA backbone and RNA polymerase.


2019 ◽  
Author(s):  
Dominic S Albao ◽  
Eva Maria Cutiongco-de la Paz ◽  
Maria Elizabeth Mercado ◽  
Alvin Lirio ◽  
Margarette Mariano ◽  
...  

Abstract While much work has been done in associating differentially methylated positions (DMPs) to type 2 diabetes (T2D) across different populations, not much attention has been placed on identifying its possible functional consequences. We explored methylation changes in the peripheral blood of Filipinos with T2D and identified 177 associated DMPs. Most of these DMPs were associated with genes involved in metabolism, inflammation and the cell cycle. Three of these DMPs map to the TXNIP gene body, replicating previous findings from epigenome-wide association studies (EWAS) of T2D. The TXNIP downmethylation coincided with increased transcription at the 3’-UTR, H3K36me3 histone markings, and Sp1 binding, suggesting spurious transcription initiation at the TXNIP 3’-UTR as a functional consequence of T2D methylation changes. We also explored potential epigenetic determinants to increased incidence of T2D in Filipino immigrants in the United States and found 3 DMPs associated with the interaction of T2D and immigration. Two of these DMPs were located near MAP 2 K7 and PRMT1, which may point towards dysregulated stress response and inflammation as a contributing factor to T2D among Filipino immigrants.


2019 ◽  
Vol 56 (8) ◽  
pp. 491-498
Author(s):  
Marilyn Scandaglia ◽  
Angel Barco

During the development of multicellular organisms, chromatin-modifying enzymes orchestrate the establishment of gene expression programmes that characterise each differentiated cell type. These enzymes also contribute to the maintenance of cell type-specific transcription profiles throughout life. But what happens when epigenomic regulation goes awry? Genomic screens in experimental models of intellectual disability disorders (IDDs) caused by mutations in epigenetic machinery-encoding genes have shown that transcriptional dysregulation constitutes a hallmark of these conditions. Here, we underscore the connections between a subset of chromatin-linked IDDs and spurious transcription in brain cells. We also propose that aberrant gene expression in neurons, including both the ectopic transcription of non-neuronal genes and the activation of cryptic promoters, may importantly contribute to the pathoaetiology of these disorders.


Viruses ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 368 ◽  
Author(s):  
Maximilian Münster ◽  
Anna Płaszczyca ◽  
Mirko Cortese ◽  
Christopher Neufeldt ◽  
Sarah Goellner ◽  
...  

The Zika virus (ZIKV) has recently attracted major research interest as infection was unexpectedly associated with neurological manifestations in developing foetuses and with Guillain-Barré syndrome in infected adults. Understanding the underlying molecular mechanisms requires reverse genetic systems, which allow manipulation of infectious cDNA clones at will. In the case of flaviviruses, to which ZIKV belongs, several reports have indicated that the construction of full-length cDNA clones is difficult due to toxicity during plasmid amplification in Escherichia coli. Toxicity of flaviviral cDNAs has been linked to the activity of cryptic prokaryotic promoters within the region encoding the structural proteins leading to spurious transcription and expression of toxic viral proteins. Here, we employ an approach based on in silico prediction and mutational silencing of putative promoters to generate full-length cDNA clones of the historical MR766 strain and the contemporary French Polynesian strain H/PF/2013 of ZIKV. While for both strains construction of full-length cDNA clones has failed in the past, we show that our approach generates cDNA clones that are stable on single bacterial plasmids and give rise to infectious viruses with properties similar to those generated by other more complex assembly strategies. Further, we generate luciferase and fluorescent reporter viruses as well as sub-genomic replicons that are fully functional and suitable for various research and drug screening applications. Taken together, this study confirms that in silico prediction and silencing of cryptic prokaryotic promoters is an efficient strategy to generate full-length cDNA clones of flaviviruses and reports novel tools that will facilitate research on ZIKV biology and development of antiviral strategies.


Sign in / Sign up

Export Citation Format

Share Document