Salivary Gland Development in Culture

Author(s):  
Marcia Gaete ◽  
Tathyane H. N. Teshima ◽  
Lemonia Chatzeli ◽  
Abigail S. Tucker
1989 ◽  
Vol 35 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Kent S. Shelby ◽  
Katherine M. Kocan ◽  
John A. Bantle ◽  
John R. Sauer

EvoDevo ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Chilinh Nguyen ◽  
Emily Andrews ◽  
Christy Le ◽  
Longhua Sun ◽  
Zeinab Annan ◽  
...  

2014 ◽  
Vol 25-26 ◽  
pp. 52-60 ◽  
Author(s):  
Vaishali N. Patel ◽  
Matthew P. Hoffman

Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 209-221
Author(s):  
Hiroyuki Nogawa ◽  
Takeo Mizuno

Recombination of the epithelium and mesenchyme between quail anterior submaxillary gland (elongating type) and quail anterior lingual or mouse submaxillary gland (branching type) was effected in vitro to clarify whether the elongating morphogenesis was directed by the epithelial or the mesenchymal component. Quail anterior submaxillary epithelium recombined with quail anterior lingual or mouse submaxillary mesenchyme came to branch. Conversely, quail anterior lingual or 12-day mouse submaxillary epithelium recombined with quail anterior submaxillary mesenchyme came to elongate, though the mesenchyme was less effective with 13-day mouse submaxillary epithelium. These results suggest that the elongating or branching morphogenesis of quail salivary glands is controlled by the mesenchyme.


2018 ◽  
Vol 60 (4) ◽  
pp. 83-86 ◽  
Author(s):  
Takayoshi Sakai ◽  
Hitomi Ono Minagi ◽  
Aya Obana-Koshino ◽  
Manabu Sakai

1976 ◽  
Vol 149 (4) ◽  
pp. 459-482 ◽  
Author(s):  
Michael J. Berridge ◽  
Brij L. Gupta ◽  
James L. Oschman ◽  
Betty J. Wall

Development ◽  
2000 ◽  
Vol 127 (4) ◽  
pp. 679-691 ◽  
Author(s):  
M.M. Myat ◽  
D.J. Andrew

During Drosophila development, the salivary primordia are internalized to form the salivary gland tubes. By analyzing immuno-stained histological sections and scanning electron micrographs of multiple stages of salivary gland development, we show that internalization occurs in a defined series of steps, involves coordinated cell shape changes and begins with the dorsal-posterior cells of the primordia. The ordered pattern of internalization is critical for the final shape of the salivary gland. In embryos mutant for huckebein (hkb), which encodes a transcription factor, or faint sausage (fas), which encodes a cell adhesion molecule, internalization begins in the center of the primordia, and completely aberrant tubes are formed. The sequential expression of hkb in selected cells of the primordia presages the sequence of cell movements. We propose that hkb dictates the initial site of internalization, the order in which invagination progresses and, consequently, the final shape of the organ. We propose that fas is required for hkb-dependent signaling events that coordinate internalization.


2009 ◽  
Vol 126 ◽  
pp. S131-S132
Author(s):  
Kirsty Wells ◽  
Denis Headon ◽  
Abigail Tucker

Author(s):  
Isabel Castro ◽  
María-José Barrera ◽  
Sergio González ◽  
Sergio Aguilera ◽  
Ulises Urzúa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document