scholarly journals 06-P040 The role of Eda signalling in salivary gland development

2009 ◽  
Vol 126 ◽  
pp. S131-S132
Author(s):  
Kirsty Wells ◽  
Denis Headon ◽  
Abigail Tucker
FEBS Journal ◽  
2019 ◽  
Vol 286 (18) ◽  
pp. 3701-3717
Author(s):  
Manabu Sakai ◽  
Moe Fukumoto ◽  
Kazuki Ikai ◽  
Hitomi Ono Minagi ◽  
Shinobu Inagaki ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Kajohnkiart Janebodin ◽  
Worakanya Buranaphatthana ◽  
Nicholas Ieronimakis ◽  
Aislinn L. Hays ◽  
Morayma Reyes

Despite a pivotal role in salivary gland development, homeostasis, and disease, the role of salivary gland mesenchyme is not well understood. In this study, we used theCol1a1-GFPmouse model to characterize the salivary gland mesenchymein vitroandin vivo. TheCol1a1-GFPtransgene was exclusively expressed in the salivary gland mesenchyme.Ex vivoculture of mixed salivary gland cells in DMEM plus serum medium allowed long-term expansion of salivary gland epithelial and mesenchymal cells. The role of TGF-β1 in salivary gland development and disease is complex. Therefore, we used thisin vitroculture system to study the effects of TGF-β1 on salivary gland cell differentiation. TGF-β1 induced the expression of collagen, and inhibited the formation of acini-like structures in close proximity to mesenchymal cells, which adapted a fibroblastic phenotype. In contrast, TGF-βR1 inhibition increased acini genes and fibroblast growth factors (Fgf-7andFgf-10), decreased collagen and induced formation of larger, mature acini-like structures. Thus, inhibition of TGF-βsignaling may be beneficial for salivary gland differentiation; however, due to differential effects of TGF-β1 in salivary gland epithelial versus mesenchymal cells, selective inhibition is desirable. In conclusion, this mixed salivary gland cell culture system can be used to study epithelial-mesenchymal interactions and the effects of differentiating inducers and inhibitors.


2003 ◽  
Vol 23 (23) ◽  
pp. 8495-8504 ◽  
Author(s):  
So Yeon Kwon ◽  
Paul Badenhorst ◽  
F. Javier Martin-Romero ◽  
Bradley A. Carlson ◽  
Bruce M. Paterson ◽  
...  

ABSTRACT Selenium is implicated in many diseases, including cancer, but its function at the molecular level is poorly understood. BthD is one of three selenoproteins recently identified in Drosophila. To elucidate the function of BthD and the role of selenoproteins in cellular metabolism and health, we analyzed the developmental expression profile of this protein and used inducible RNA interference (RNAi) to ablate function. We find that BthD is dynamically expressed during Drosophila development. bthD mRNA and protein are abundant in the ovaries of female flies and are deposited into the developing oocyte. Maternally contributed protein and RNA persist during early embryonic development but decay by the onset of gastrulation. At later stages of embryogenesis, BthD is expressed highly in the developing salivary gland. We generated transgenic fly lines carrying an inducible gene-silencing construct, in which an inverted bthD genomic-cDNA hybrid is under the control of the Drosophila Gal4 upstream activation sequence system. Duplex RNAi induced from this construct targeted BthD mRNA for destruction and reduced BthD protein levels. We found that loss of BthD compromised salivary gland morphogenesis and reduced animal viability.


Author(s):  
Georgia Colleluori ◽  
Jessica Perugini ◽  
Giorgio Barbatelli ◽  
Saverio Cinti

AbstractThe mammary gland (MG) is an exocrine gland present in female mammals responsible for the production and secretion of milk during the process of lactation. It is mainly composed by epithelial cells and adipocytes. Among the features that make the MG unique there are 1) its highly plastic properties displayed during pregnancy, lactation and involution (all steps belonging to the lactation cycle) and 2) its requirement to grow in close association with adipocytes which are absolutely necessary to ensure MG’s proper development at puberty and remodeling during the lactation cycle. Although MG adipocytes play such a critical role for the gland development, most of the studies have focused on its epithelial component only, leaving the role of the neighboring adipocytes largely unexplored. In this review we aim to describe evidences regarding MG’s adipocytes role and properties in physiologic conditions (gland development and lactation cycle), obesity and breast cancer, emphasizing the existing gaps in the literature which deserve further investigation.


1989 ◽  
Vol 35 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Kent S. Shelby ◽  
Katherine M. Kocan ◽  
John A. Bantle ◽  
John R. Sauer

EvoDevo ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Chilinh Nguyen ◽  
Emily Andrews ◽  
Christy Le ◽  
Longhua Sun ◽  
Zeinab Annan ◽  
...  

2014 ◽  
Vol 25-26 ◽  
pp. 52-60 ◽  
Author(s):  
Vaishali N. Patel ◽  
Matthew P. Hoffman

Sign in / Sign up

Export Citation Format

Share Document