Use of Micro-Computed Tomography to Visualize and Quantify COVID-19 Efficiency in Free-Breathing Hamsters

Author(s):  
Laura Seldeslachts ◽  
Christopher Cawthorne ◽  
Suzanne F. Kaptein ◽  
Robbert Boudewijns ◽  
Hendrik Jan Thibaut ◽  
...  
2011 ◽  
Vol 38 (6Part35) ◽  
pp. 3863-3863
Author(s):  
N Ford ◽  
K Yip ◽  
D Yohan ◽  
D Holdsworth ◽  
M Drangova

2007 ◽  
Vol 42 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Maria Drangova ◽  
Nancy L. Ford ◽  
Sarah A. Detombe ◽  
Andrew R. Wheatley ◽  
David W. Holdsworth

2007 ◽  
Vol 102 (5) ◽  
pp. 2046-2055 ◽  
Author(s):  
N. L. Ford ◽  
E. L. Martin ◽  
J. F. Lewis ◽  
R. A. W. Veldhuizen ◽  
M. Drangova ◽  
...  

Lung morphology and function in human subjects can be monitored with computed tomography (CT). Because many human respiratory diseases are routinely modeled in rodents, a means of monitoring the changes in the structure and function of the rodent lung is desired. High-resolution images of the rodent lung can be attained with specialized micro-CT equipment, which provides a means of monitoring rodent models of lung disease noninvasively with a clinically relevant method. Previous studies have shown respiratory-gated images of intubated and respirated mice. Although the image quality and resolution are sufficient in these studies to make quantitative measurements, these measurements of lung structure will depend on the settings of the ventilator and not on the respiratory mechanics of the individual animals. In addition, intubation and ventilation can have unnatural effects on the respiratory dynamics of the animal, because the airway pressure, tidal volume, and respiratory rate are selected by the operator. In these experiments, important information about the symptoms of the respiratory disease being studied may be missed because the respiration is forced to conform to the ventilator settings. In this study, we implement a method of respiratory-gated micro-CT for use with anesthetized free-breathing rodents. From the micro-CT images, quantitative analysis of the structure of the lungs of healthy unconscious mice was performed to obtain airway diameters, lung and airway volumes, and CT densities at end expiration and during inspiration. Because the animals were free breathing, we were able to calculate tidal volume (0.09 ± 0.03 ml) and functional residual capacity (0.16 ± 0.03 ml).


2013 ◽  
Author(s):  
Agnes Ostertag ◽  
Francoise Peyrin ◽  
Sylvie Fernandez ◽  
Jean-Denis Laredo ◽  
Vernejoul Marie-Christine De ◽  
...  

2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


2018 ◽  
Author(s):  
Zoë E. Wilbur ◽  
◽  
Arya Udry ◽  
Arya Udry ◽  
Daniel M. Coleff ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


Sign in / Sign up

Export Citation Format

Share Document