Identification of Glycan-Specific Variable Lymphocyte Receptors Using Yeast Surface Display and Glycan Microarrays

2021 ◽  
pp. 73-89
Author(s):  
Tanya R. McKitrick ◽  
Melinda S. Hanes ◽  
Charles S. Rosenberg ◽  
Jamie Heimburg-Molinaro ◽  
Max D. Cooper ◽  
...  
2019 ◽  
Vol 5 (5) ◽  
pp. eaau4245 ◽  
Author(s):  
Benjamin J. Umlauf ◽  
Paul A. Clark ◽  
Jason M. Lajoie ◽  
Julia V. Georgieva ◽  
Samantha Bremner ◽  
...  

Diseases that lead to blood-brain barrier (BBB) disruption will pathologically expose normally inaccessible brain extracellular matrix (ECM) to circulating blood components. Therefore, we hypothesized that brain ECM-targeting moieties could specifically target the disrupted BBB and potentially deliver therapies. Variable lymphocyte receptors (VLRs) that preferentially associate with brain ECM were identified from an immune VLR library via yeast surface display biopanning coupled with a moderate throughput ECM screen. Brain ECM binding of VLR clones to murine and human brain tissue sections was confirmed. After systemic administration, P1C10, the lead brain ECM-targeting VLR candidate, specifically accumulated in brains with mannitol-disrupted BBB and at disrupted BBB regions in two different intracranial glioblastoma models. We also demonstrate P1C10’s ability to deliver doxorubicin-loaded liposomes, leading to significantly improved survival in glioblastoma-bearing mice. Thus, VLRs can be used to selectively target pathologically exposed brain ECM and deliver drug payloads.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Huiyi Shang ◽  
Danni Yang ◽  
Dairong Qiao ◽  
Hui Xu ◽  
Yi Cao

Levan has wide applications in chemical, cosmetic, pharmaceutical and food industries. The free levansucrase is usually used in the biosynthesis of levan, but the poor reusability and low stability of free levansucrase have limited its large-scale use. To address this problem, the surface-displayed levansucrase in Saccharomyces cerevisiae were generated and evaluated in this study. The levansucrase from Zymomonas mobilis was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using a various yeast surface display platform. The N-terminal fusion partner is based on a-agglutinin, and the C-terminal one is Flo1p. The yield of levan produced by these two whole-cell biocatalysts reaches 26 g/L and 34 g/L in 24 h, respectively. Meanwhile, the stability of the surface-displayed levansucrases is significantly enhanced. After six reuses, these two biocatalysts retained over 50% and 60% of their initial activities, respectively. Furthermore, the molecular weight and polydispersity test of the products suggested that the whole-cell biocatalyst of levansucrase displayed by Flo1p has more potentials in the production of levan with low molecular weight which is critical in certain applications. In conclusion, our method not only enable the possibility to reuse the enzyme, but also improves the stability of the enzyme.


Catalysts ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 94 ◽  
Author(s):  
Ian Dominic Flormata Tabañag ◽  
I-Ming Chu ◽  
Yu-Hong Wei ◽  
Shen-Long Tsai

Climate change is directly linked to the rapid depletion of our non-renewable fossil resources and has posed concerns on sustainability. Thus, imploring the need for us to shift from our fossil based economy to a sustainable bioeconomy centered on biomass utilization. The efficient bioconversion of lignocellulosic biomass (an ideal feedstock) to a platform chemical, such as bioethanol, can be achieved via the consolidated bioprocessing technology, termed yeast surface engineering, to produce yeasts that are capable of this feat. This approach has various strategies that involve the display of enzymes on the surface of yeast to degrade the lignocellulosic biomass, then metabolically convert the degraded sugars directly into ethanol, thus elevating the status of yeast from an immobilization material to a whole-cell biocatalyst. The performance of the engineered strains developed from these strategies are presented, visualized, and compared in this article to highlight the role of this technology in moving forward to our quest against climate change. Furthermore, the qualitative assessment synthesized in this work can serve as a reference material on addressing the areas of improvement of the field and on assessing the capability and potential of the different yeast surface display strategies on the efficient degradation, utilization, and ethanol production from lignocellulosic biomass.


2021 ◽  
Author(s):  
Jimmy D Gollihar ◽  
Jason S McLellan ◽  
Daniel R Boutz ◽  
Jule Goike ◽  
Andrew Horton ◽  
...  

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has sparked concern over the continued effectiveness of existing therapeutic antibodies and vaccines. Hence, together with increased genomic surveillance, methods to rapidly develop and assess effective interventions are critically needed. Here we report the discovery of SARS-CoV-2 neutralizing antibodies isolated from COVID-19 patients using a high-throughput platform. Antibodies were identified from unpaired donor B-cell and serum repertoires using yeast surface display, proteomics, and public light chain screening. Cryo-EM and functional characterization of the antibodies identified N3-1, an antibody that binds avidly (Kd,app = 68 pM) to the receptor binding domain (RBD) of the spike protein and robustly neutralizes the virus in vitro. This antibody likely binds all three RBDs of the trimeric spike protein with a single IgG. Importantly, N3-1 equivalently binds spike proteins from emerging SARS-CoV-2 variants of concern, neutralizes UK variant B.1.1.7, and binds SARS-CoV spike with nanomolar affinity. Taken together, the strategies described herein will prove broadly applicable in interrogating adaptive immunity and developing rapid response biological countermeasures to emerging pathogens.


Sign in / Sign up

Export Citation Format

Share Document