Assembly of Light-Harvesting Complexes of Photosystem II and the Role of Chlorophyll b

Author(s):  
J. Kenneth Hoober ◽  
Joan H. Argyroudi-Akoyunoglou
1996 ◽  
Vol 51 (11-12) ◽  
pp. 763-771 ◽  
Author(s):  
Andrey A Moskalenko ◽  
Navassard V Karapetyan

Besides the light-harvesting and protecting role, carotenoids are also instrumental as structural components for the assembly of light-harvesting complexes in purple bacteria and green plants, as well as for the formation of photosystem II complex. Carotenoids stabilize those pigm ent-protein complexes, but have no effect on the form ation of the reaction centers of purple bacteria and photosystem I of plants.


1999 ◽  
Vol 274 (15) ◽  
pp. 10458-10465 ◽  
Author(s):  
Alexander V. Ruban ◽  
Pamela J. Lee ◽  
Mark Wentworth ◽  
Andrew J. Young ◽  
Peter Horton

2014 ◽  
Vol 81 ◽  
pp. 121-127 ◽  
Author(s):  
Kostas Stamatakis ◽  
Merope Tsimilli-Michael ◽  
George C. Papageorgiou

1990 ◽  
Vol 45 (5) ◽  
pp. 366-372 ◽  
Author(s):  
M. T. Giardi ◽  
J. Barber ◽  
M. C. Giardina ◽  
R. Bassi

Abstract Isoelectrofocusing has been used to separate various chlorophyll-protein complexes of photosystem two (PS II). Light-harvesting complexes containing chlorophyll a and chlorophyll b (LHC II) were located in bands having p/s in the region of 4.5. At slightly higher pH other light-harvesting complexes containing little or no chlorophyll b were found. In the most basic region of the isoelectrofocusing gel, were located PS II core complexes characterized by con­taining the proteins of CP47, CP43, D 1, D 2 and α-subunit of cytochrome b559. The number of PS II core bands depended on the particular conditions employed for the separation procedure and in some cases were contaminated by CP 29. It is suggested that this heterogeneity resulting from different protonation states of the PS II. The least-acidic PS II core complex (pI 5.5) was found to bind the herbicides atrazine, diuron and dinoseb. In contrast, a PS II core complex with a p / of 4.9 bound only diuron. Its inability to bind atrazine was shown to be due to the low pH but no such explanation could be found for dinoseb. When atrazine-resistant mutant Senecio vulgaris was used, no binding of radioactive atra­ zine was observed with the PS II cores having a p i of 5.5. It is therefore suggested that the normal atrazine binding observed with PS II cores involves the high affinity site detected with intact membranes. With the PS II cores, however, this site has a reduced affinity probably due to structural modification in the D 1-polypeptide resulting from the isolation procedures.


FEBS Letters ◽  
2001 ◽  
Vol 499 (1-2) ◽  
pp. 27-31 ◽  
Author(s):  
Volkmar H.R. Schmid ◽  
Peter Thomé ◽  
Wolfgang Rühle ◽  
Harald Paulsen ◽  
Werner Kühlbrandt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document