The Dependence of the IMF on Initial Conditions

Author(s):  
Matthew R. Bate
Keyword(s):  
2021 ◽  
Vol 502 (4) ◽  
pp. 5185-5199
Author(s):  
Hamidreza Mahani ◽  
Akram Hasani Zonoozi ◽  
Hosein Haghi ◽  
Tereza Jeřábková ◽  
Pavel Kroupa ◽  
...  

ABSTRACT Some ultracompact dwarf galaxies (UCDs) have elevated observed dynamical V-band mass-to-light (M/LV) ratios with respect to what is expected from their stellar populations assuming a canonical initial mass function (IMF). Observations have also revealed the presence of a compact dark object in the centres of several UCDs, having a mass of a few to 15 per cent of the present-day stellar mass of the UCD. This central mass concentration has typically been interpreted as a supermassive black hole, but can in principle also be a subcluster of stellar remnants. We explore the following two formation scenarios of UCDs: (i) monolithic collapse and (ii) mergers of star clusters in cluster complexes as are observed in massively starbursting regions. We explore the physical properties of the UCDs at different evolutionary stages assuming different initial stellar masses of the UCDs and the IMF being either universal or changing systematically with metallicity and density according to the integrated Galactic IMF theory. While the observed elevated M/LV ratios of the UCDs cannot be reproduced if the IMF is invariant and universal, the empirically derived IMF that varies systematically with density and metallicity shows agreement with the observations. Incorporating the UCD-mass-dependent retention fraction of dark remnants improves this agreement. In addition, we apply the results of N-body simulations to young UCDs and show that the same initial conditions describing the observed M/LV ratios reproduce the observed relation between the half-mass radii and the present-day masses of the UCDs. The findings thus suggest that the majority of UCDs that have elevated M/LV ratios could have formed monolithically with significant remnant-mass components that are centrally concentrated, while those with small M/LV values may be merged star cluster complexes.


2018 ◽  
Vol 611 ◽  
pp. A89 ◽  
Author(s):  
Yueh-Ning Lee ◽  
Patrick Hennebelle

Context. Understanding the origin of the initial mass function (IMF) of stars is a major problem for the star formation process and beyond. Aim. We investigate the dependence of the peak of the IMF on the physics of the so-called first Larson core, which corresponds to the point where the dust becomes opaque to its own radiation. Methods. We performed numerical simulations of collapsing clouds of 1000 M⊙ for various gas equations of state (eos), paying great attention to the numerical resolution and convergence. The initial conditions of these numerical experiments are varied in the companion paper. We also develop analytical models that we compare to our numerical results. Results. When an isothermal eos is used, we show that the peak of the IMF shifts to lower masses with improved numerical resolution. When an adiabatic eos is employed, numerical convergence is obtained. The peak position varies with the eos, and using an analytical model to infer the mass of the first Larson core, we find that the peak position is about ten times its value. By analyzing the stability of nonlinear density fluctuations in the vicinity of a point mass and then summing over a reasonable density distribution, we find that tidal forces exert a strong stabilizing effect and likely lead to a preferential mass several times higher than that of the first Larson core. Conclusions. We propose that in a sufficiently massive and cold cloud, the peak of the IMF is determined by the thermodynamics of the high-density adiabatic gas as well as the stabilizing influence of tidal forces. The resulting characteristic mass is about ten times the mass of the first Larson core, which altogether leads to a few tenths of solar masses. Since these processes are not related to the large-scale physical conditions and to the environment, our results suggest a possible explanation for the apparent universality of the peak of the IMF.


2005 ◽  
Vol 1 (S227) ◽  
pp. 285-290 ◽  
Author(s):  
Morten Andersen ◽  
M. R. Meyer ◽  
J. Greissl ◽  
B. D. Oppenheimer ◽  
M. A. Kenworthy ◽  
...  

2006 ◽  
Vol 2 (S237) ◽  
pp. 435-435 ◽  
Author(s):  
S. Kitsionas ◽  
A. P. Whitworth ◽  
R. S. Klessen ◽  
A.-K. Jappsen

AbstractIt has been recently shown by several authors that fragmentation of pre-stellar gas (i.e. at densities from 104 to 1010 particles cm−3 and temperatures of order 10-30 K) depends on the gas thermodynamics much more than it was anticipated in earlier studies, in which only an isothermal behaviour has been assumed for the gas. Here we review the results of a number of numerical hydrodynamic simulations (e.g. Li et al. 2003, Jappsen et al. 2005, Bonnell et al. 2006) in which departure from isothermality has been attempted by employing a polytropic equation of state (eos) with exponent different from unity. In particular, in these studies it has been shown that the dominant fragmentation scale of pre-stellar gas, and hence the peak of the initial mass function (IMF), depends on a polytropic exponent that changes value, from below to above unity, at a critical density (Larson 2005). Furthermore, this piecewise polytropic eos depends on the gas metallicity and fundamental constants. Therefore, the peak of the IMF depends, in turn, also on the gas metallicity and fundamental constants rather than on initial conditions, as it has been previously suggested (e.g. Larson 1995). Hence, we are for the first time in a position to infer theoretically the notion of a universal IMF (at least for its low-mass end).We also present two test cases in which a non-isothermal eos has been used in the context of smoothed particle hydrodynamic (SPH) numerical simulations. In the first case star formation is triggered by means of low-mass clump collisions. These calculations have shown that clump collisions can be a relatively efficient mechanism for the formation of solar-mass protostars and their lower-mass companions (efficiency greater or of order 20-25%; Kitsionas & Whitworth 2006). We have also found that in such collisions protostars form mainly by fragmentation of dense filaments along which it is likely that pairs of protostars capture each other in close binaries surrounded by circumbinary discs. In the second case, the use of a polytropic eos with a varying exponent appropriate for the metallicity of starburst regions (Spaans & Silk 2000, 2005) is shown to be sufficient to obtain a top heavy IMF similar to that observed e.g. in the Galactic centre (Klessen, Spaans & Jappsen 2006). These are preliminary results in the direction of revisiting earlier isothermal calculations that were resolving all densities up to the opacity limit for fragmentation (e.g. Bate et al. 2002ab, 2003), this time also taking into account the thermal properties of the gas in the density range between 104 and 1010 particles cm−3. The next step would be to include self-consistent radiation transport in the calculations, the first attempts for which are already in the making (e.g. Whitehouse & Bate 2004).


2006 ◽  
Vol 2 (S237) ◽  
pp. 132-140
Author(s):  
Philippe André

AbstractSeveral (sub)millimeter-wave studies of nearby star-forming regions have revealed self-gravitating prestellar condensations that seem to be the direct progenitors of individual stars and whose mass distribution resembles the IMF. In a number of cases, small internal and relative motions have been measured for these condensations, indicating they are much less turbulent than their parent cloud and do not have time to interact before evolving into protostars and pre-main sequence stars. These findings suggest that the IMF is at least partly determined by pre-collapse cloud fragmentation and that one of the keys to understanding the origin of stellar masses lies in the physical mechanisms responsible for the formation and decoupling of prestellar cores within molecular clouds.


2015 ◽  
Vol 75-76 ◽  
pp. 137-141
Author(s):  
P. André ◽  
V. Könyves ◽  
A. Roy
Keyword(s):  

Author(s):  
Musraini M Musraini M ◽  
Rustam Efendi ◽  
Rolan Pane ◽  
Endang Lily

Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi B_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s dengan b dan s bilangan bulat  tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan.   The Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation B_n=B_(n-1)+B_(n-2),n≥2, with ,  B_0=2b,B_1=s                          where b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.


Sign in / Sign up

Export Citation Format

Share Document