scholarly journals Observations of prestellar cores: Probing the initial conditions for the IMF

2006 ◽  
Vol 2 (S237) ◽  
pp. 132-140
Author(s):  
Philippe André

AbstractSeveral (sub)millimeter-wave studies of nearby star-forming regions have revealed self-gravitating prestellar condensations that seem to be the direct progenitors of individual stars and whose mass distribution resembles the IMF. In a number of cases, small internal and relative motions have been measured for these condensations, indicating they are much less turbulent than their parent cloud and do not have time to interact before evolving into protostars and pre-main sequence stars. These findings suggest that the IMF is at least partly determined by pre-collapse cloud fragmentation and that one of the keys to understanding the origin of stellar masses lies in the physical mechanisms responsible for the formation and decoupling of prestellar cores within molecular clouds.

2021 ◽  
Vol 503 (4) ◽  
pp. 6112-6135
Author(s):  
Peter Senchyna ◽  
Daniel P Stark ◽  
Stéphane Charlot ◽  
Jacopo Chevallard ◽  
Gustavo Bruzual ◽  
...  

ABSTRACT As deep spectroscopic campaigns extend to higher redshifts and lower stellar masses, the interpretation of galaxy spectra depends increasingly upon models for very young stellar populations. Here we present new HST/COS ultraviolet spectroscopy of seven nearby (<120 Mpc) star-forming regions hosting very young stellar populations (∼4–20 Myr) with optical Wolf–Rayet stellar wind signatures, ideal laboratories in which to benchmark these stellar models. We detect nebular C iii] in all seven, but at equivalent widths uniformly <10 Å. This suggests that even for very young stellar populations, the highest equivalent width C iii] emission at ≥15 Å is reserved for inefficiently cooled gas at metallicities at or below that of the SMC. The spectra also reveal strong C iv P-Cygni profiles and broad He ii emission formed in the winds of massive stars, including some of the most prominent He ii stellar wind lines ever detected in integrated spectra. We find that the latest stellar population synthesis prescriptions with improved treatment of massive stars nearly reproduce the entire range of stellar He ii wind strengths observed here. However, we find that these models cannot simultaneously match the strongest wind features alongside the optical nebular line constraints. This discrepancy can be naturally explained by an overabundance of very massive stars produced by a high incidence of binary mass transfer and mergers occurring on short ≲10 Myr time-scales, suggesting these processes may be crucial for understanding systems dominated by young stars both nearby and in the early Universe.


1997 ◽  
Vol 481 (1) ◽  
pp. 378-385 ◽  
Author(s):  
A. M. Ghez ◽  
D. W. McCarthy ◽  
J. L. Patience ◽  
T. L. Beck

2009 ◽  
Vol 5 (S266) ◽  
pp. 395-398
Author(s):  
Phillip A. B. Galli ◽  
Ramachrisna Teixeira ◽  
Christine Ducourant ◽  
Claude Bertout

AbstractMany studies of star-forming regions have been carried out since the discovery of compact Hii regions in the late 1960s. The kinematic properties of young stars in the nearest regions with ongoing and recent star formation provide essential tests of their formation mechanisms. The detection of coeval moving groups allows determination of individual distances through the convergent-point method. As a result, the main physical properties of these stars and their early evolutionary stages can be determined if we know how distant they are.


1989 ◽  
Vol 8 ◽  
pp. 117-118
Author(s):  
M. Simon

AbstractThe lunar occultation technique applied in the IR offers a powerful means of identifying binaries among obscured young stars. Our program has revealed binaries with separations from 1 to 100 AU in the Taurus and Ophiuchus star forming regions to about K=9 mag. To date, 29 objects have been observed; 6 were discovered to be binaries. The observed binary frequency is about half that expected from the binary statistics of a comparable sample of field stars. The discrepancy is probably attributable to our insensitivity to binary systems with secondary mass much less than that of the primary.


2019 ◽  
Vol 490 (1) ◽  
pp. 1076-1093 ◽  
Author(s):  
Dalal El Youssoufi ◽  
Maria-Rosa L Cioni ◽  
Cameron P M Bell ◽  
Stefano Rubele ◽  
Kenji Bekki ◽  
...  

ABSTRACT The Magellanic Clouds are nearby dwarf irregular galaxies whose morphologies show different properties when traced by different stellar populations, making them an important laboratory for studying galaxy morphologies. We study the morphology of the Magellanic Clouds using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds system. We used about 10 and 2.5 million sources across an area of ∼105 and ∼42 deg2 towards the Large and Small Magellanic Cloud (LMC and SMC), respectively. We estimated median ages of stellar populations occupying different regions of the near-infrared (J − Ks, Ks) colour–magnitude diagram. Morphological maps were produced and detailed features in the central regions were characterized for the first time with bins corresponding to a spatial resolution of 0.13 kpc (LMC) and 0.16 kpc (SMC). In the LMC, we find that main-sequence stars show coherent structures that grow with age and trace the multiple spiral arms of the galaxy, star-forming regions become dimmer as we progress in age, while supergiant stars are centrally concentrated. Intermediate-age stars, despite tracing a regular and symmetrical morphology, show central clumps and hints of spiral arms. In the SMC, young main-sequence stars depict a broken bar. Intermediate-age populations show signatures of elongation towards the Magellanic Bridge that can be attributed to the LMC–SMC interaction ∼200 Myr ago. They also show irregular central features suggesting that the inner SMC has also been influenced by tidal interactions.


2012 ◽  
Vol 10 (H16) ◽  
pp. 31-48 ◽  
Author(s):  
Philippe André

AbstractRecent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space Observatory have provided us with unprecedented images of the initial conditions and early phases of the star formation process. The Herschel images reveal an intricate network of filamentary structure in every interstellar cloud. These filaments all exhibit remarkably similar widths - about a tenth of a parsec - but only the densest ones contain prestellar cores, the seeds of future stars. The Herschel results favor a scenario in which interstellar filaments and prestellar cores represent two key steps in the star formation process: first turbulence stirs up the gas, giving rise to a universal web-like structure in the interstellar medium, then gravity takes over and controls the further fragmentation of filaments into prestellar cores and ultimately protostars. This scenario provides new insight into the inefficiency of star formation, the origin of stellar masses, and the global rate of star formation in galaxies. Despite an apparent complexity, global star formation may be governed by relatively simple universal laws from filament to galactic scales.


1998 ◽  
Vol 497 (2) ◽  
pp. 721-735 ◽  
Author(s):  
Yasushi Nakajima ◽  
Kengo Tachihara ◽  
Tomoyuki Hanawa ◽  
Makoto Nakano

2019 ◽  
Vol 490 (1) ◽  
pp. 350-358
Author(s):  
Hayley L Alcock ◽  
Richard J Parker

ABSTRACT Observations of pre- and proto-stellar cores in young star-forming regions show them to be mass segregated, i.e. the most massive cores are centrally concentrated, whereas pre-main-sequence stars in the same star-forming regions (and older regions) are not. We test whether this apparent contradiction can be explained by the massive cores fragmenting into stars of much lower mass, thereby washing out any signature of mass segregation in pre-main-sequence stars. Whilst our fragmentation model can reproduce the stellar initial mass function, we find that the resultant distribution of pre-main sequence stars is mass segregated to an even higher degree than that of the cores, because massive cores still produce massive stars if the number of fragments is reasonably low (between one and five). We therefore suggest that the reason cores are observed to be mass segregated and stars are not is likely due to dynamical evolution of the stars, which can move significant distances in star-forming regions after their formation.


2020 ◽  
Vol 493 (4) ◽  
pp. 4925-4935
Author(s):  
Emma C Daffern-Powell ◽  
Richard J Parker

ABSTRACT The $\mathcal {Q}$-parameter is used extensively to quantify the spatial distributions of stars and gas in star-forming regions as well as older clusters and associations. It quantifies the amount of structure using the ratio of the average length of the minimum spanning tree, $\bar{m}$, to the average length within the complete graph, $\bar{s}$. The interpretation of the $\mathcal {Q}$-parameter often relies on comparing observed values of $\mathcal {Q}$, $\bar{m}$, and $\bar{s}$ to idealized synthetic geometries, where there is little or no match between the observed star-forming regions and the synthetic regions. We measure $\mathcal {Q}$, $\bar{m}$, and $\bar{s}$ over 10 Myr in N-body simulations, which are compared to IC 348, NGC 1333, and the ONC. For each star-forming region, we set up simulations that approximate their initial conditions for a combination of different virial ratios and fractal dimensions. We find that the dynamical evolution of idealized fractal geometries can account for the observed $\mathcal {Q}$, $\bar{m}$, and $\bar{s}$ values in nearby star-forming regions. In general, an initially fractal star-forming region will tend to evolve to become more smooth and centrally concentrated. However, we show that different initial conditions, as well as where the edge of the region is defined, can cause significant differences in the path that a star-forming region takes across the $\bar{m}{-}\bar{s}$ plot as it evolves. We caution that the observed $\mathcal {Q}$-parameter should not be directly compared to idealized geometries. Instead, it should be used to determine the degree to which a star-forming region is either spatially substructured or smooth and centrally concentrated.


2019 ◽  
Vol 490 (3) ◽  
pp. 3448-3453
Author(s):  
A Paswan ◽  
Kanak Saha ◽  
A Omar

ABSTRACT We present narrow-band Hα imaging of nearby Wolf–Rayet (WR) galaxies known as a subset of starburst galaxies. The Hα images have been used to show morphology of star-forming regions in galaxies, which leads to speculate that the studied galaxies have most likely experienced merger or interaction with low luminous dwarf galaxies or H i clouds. We further derive the Hα-based star formation rates (SFRs) in galaxies using our Hα observations. These SFRs are well correlated with SFRs derived using other indicators at far-ultraviolet, far-infrared, and 1.4-GHz radio wavebands. It is noticed that the infrared excess (IRX) method gives the best SFR estimates, consistent with different models predication. These models also predict that the sample galaxies have probably gone through a continuous star formation at least for 1 Gyr over which the recent (<10 Myr) star formation has taken place in WR phase. This study presents main-sequence (MS) relation for nearby WR galaxies for the first time. This derived MS relation is found to be similar to previously known MS relation for normal nearby star-forming galaxies, suggesting that WR systems evolve in a similar fashion as normal star-forming galaxies evolve.


Sign in / Sign up

Export Citation Format

Share Document