2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2020 ◽  
Vol 14 (4) ◽  
pp. 312-324
Author(s):  
Sadra S. Tehrani ◽  
Abolfazl Jahangiri ◽  
Mortaza Taheri-Anganeh ◽  
Hossein Maghsoudi ◽  
Saeed Khalili ◽  
...  

Background: Cholera triggered by Vibrio cholerae remains the main reason for morbidity and mortality all over the world. In addition, salmonellosis is regarded as an infectious disease that makes it essential for the identification and detection of Salmonella. With a beta-barrel structure consisting of eight non-parallel beta strands, OmpW family is widely distributed among gram-negative bacteria. Moreover, OmpW isolated from S. typhimurium and Vibrio cholerae can be used in vaccine design. Methods: Topology prediction was determined. T-cell and B-cell epitopes were selected from exposed areas, and sequence conservancy was evaluated. The remaining loops and inaccessible residues were removed to prepare OmpW-1. High antigenicity peptides were detected to replace inappropriate residues to obtain OmpW-2. Physicochemical properties were assessed, and antigenicity, hydrophobicity, flexibility, and accessibility were compared to the native Omp-W structure. Low score areas were removed from the designed structure for preparing the OmpW-3. To construct OmpW-4, TTFrC was used as T-CD4+ cell-stimulating factor and CTB as adjuvant to the end of the C-terminal of this sequence, which can increase the antigenicity and sequence density. The sequences were re-analyzed to delete the unfavorable residues. Besides, the solubility of the mature OmpW and the designed structure were predicted while overexpressed in E. coli. Results: The designed vaccine is a stable protein which has immune cells recognizing epitopes and is considered as an antigen. The construct can be overexpressed in a E. coli. Conclusion: The multi-epitope vaccine is a suitable stimulator for immune system and would be a candidate for experimental research. Recent patents describing numerous inventions related to the clinical facets of vaccine peptide against human infectious disease.


2016 ◽  
Vol 45 (18) ◽  
pp. 4859-4872 ◽  
Author(s):  
A. J. Miles ◽  
B. A. Wallace

Circular dichroism spectra of helical bundle (red), beta barrel (blue), and mixed helical/sheet/unordered (green) membrane proteins.


2012 ◽  
Vol 110 (2) ◽  
pp. 417-423 ◽  
Author(s):  
Guillaume Roussel ◽  
Eric A. Perpète ◽  
André Matagne ◽  
Emmanuel Tinti ◽  
Catherine Michaux

2014 ◽  
Vol 70 (a1) ◽  
pp. C578-C578
Author(s):  
Nicholas Noinaj ◽  
Adam Kuszak ◽  
Curtis Balusek ◽  
JC Gumbart ◽  
Petra Lukacik ◽  
...  

Beta-barrel membrane proteins are essential for nutrient import, signaling, motility, and survival. In Gram-negative bacteria, the beta-barrel assembly machinery (BAM) complex is responsible for the biogenesis of beta-barrel outer membrane proteins (OMPs), with homologous complexes found in mitochondria and chloroplasts. Despite their essential roles, exactly how these OMPs are formed remains unknown. The BAM complex consists of a central and essential component called BamA (an OMP itself) and four lipoproteins called BamB-E. While the structure of the lipoproteins have been reported, the structure of full length BamA has been elusive. Recently though, we described the structure of BamA from two species of bacteria: Neisseria gonorrhoeae and Haemophilus ducreyi. BamA consists of a large periplasmic domain attached to a 16-strand transmembrane beta-barrel domain. Together, our crystal structures and molecule dynamics (MD) simulations revealed several structural features which gave clues to the mechanism by which BamA catalyzes beta-barrel assembly. The first is that the interior cavity is accessible in one BamA structure and conformationally closed in the other. Second, an exterior rim of the beta-barrel has a distinctly narrowed hydrophobic surface, locally destabilizing the outer membrane. Third, the beta-barrel can undergo lateral opening, suggesting a route from the interior cavity in BamA into the outer membrane. And fourth, a surface exposed exit pore positioned above the lateral opening site which may play a role in the biogenesis of extracellular loops. In this presentation, the crystal structures and MD simulations of BamA will be presented along with our work looking at the role of these four structural features in the role of BamA within the BAM complex.


Sign in / Sign up

Export Citation Format

Share Document