Sol-Gel Synthesis of Functionalized Nanocomposite Sorbtional Material with Polymer-Silica Matrix

Author(s):  
Bahodir D. Kabulov ◽  
Dilshod H. Shakarova ◽  
Kazim A. Akhundjanov ◽  
Sayibjan S. Negmatov ◽  
Oleg A. Shpigun
2002 ◽  
Vol 737 ◽  
Author(s):  
Lidia Armelao ◽  
Davide Barreca ◽  
Manuel Bertapelle ◽  
Gregorio Bottaro ◽  
Cinzia Sada ◽  
...  

ABSTRACTThis paper is focused on the sol-gel synthesis and characterization of CuO-based nanosystems both in the form of supported films and as guest nanoclusters embedded in a silica matrix. In both cases copper acetate (Cu(CH3COO)2 · H2O) was used as Cu source and, for the CuO :SiO2 nanocomposite systems, tetraethoxysilane (Si(OC2H5)4, TEOS) was adopted as silica precursor. Films were obtained by a dip-coating procedure and subsequently treated in air between 100 and 900°C. The system evolution on thermal annealing was studied by X-ray photoelectron spectroscopy (XPS), Glancing-Incidence X-ray diffraction (GIXRD) and optical absorption. Irrespective of the processing conditions, the formation of tenorite (CuO) crystallites with nanometric dimension was observed. In the nanocomposite samples, copper was homogeneously distributed in the host matrix and stable CuO nanoclusters (φ ≈ 15 nm) were obtained.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 155 ◽  
Author(s):  
Elisabetta Tranquillo ◽  
Federico Barrino ◽  
Giovanni Dal Poggetto ◽  
Ignazio Blanco

Implanted biomedical devices can induce adverse responses in the human body, which can cause failure of the implant—referred to as implant failure. Early implant failure is induced numerous factors, most importantly, infection and inflammation. Natural products are, today, one of the main sources of new drug molecules due to the development of pathogenic bacterial strains that possess resistance to more antibiotics used currently in various diseases. The aim of this work is the sol–gel synthesis of antibacterial biomedical implants. In the silica matrix, different percentages (6, 12, 24, 50 wt %) of polyethylene glycol (PEG) or poly(ε-caprolactone) (PCL) were embedded. Subsequently, the ethanol solutions with high amounts of chlorogenic acid (CGA 20 wt %) were slowly added to SiO2/PEG and SiO2/PCL sol. The interactions among different organic and inorganic phases in the hybrid materials was studied by Fourier transform infrared (FTIR) spectroscopy. Furthermore, the materials were soaked in simulated body fluid (SBF) for 21 days and the formation of a hydroxyapatite layer on their surface was evaluated by FTIR and XRD analysis. Finally, Escherichia coli and Pseudomonas aeruginosa were incubated with several hybrids, and the diameter of zone of inhibition was observed to assessment the potential antibacterial properties of the hybrids.


2014 ◽  
Vol 40 (1) ◽  
pp. 8-16 ◽  
Author(s):  
S. V. Khalameida ◽  
V. V. Sydorchuk ◽  
J. Skubiszewska-Zięba ◽  
R. Leboda ◽  
V. A. Zazhigalov

2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


2019 ◽  
Author(s):  
Valentin Smeets ◽  
Ludivine van den Biggelaar ◽  
Tarek Barakat ◽  
Eric M. Gaigneaux ◽  
Damien Debecker

Self-standing macrocellular titanosilicate monolith foams are obtained using a one-pot sol-gel route and show excellent performance in the epoxidation of cyclohexene. Thanks to the High Internal Phase Emulsion (HIPE) templating method, the materials feature a high void fraction, a hierarchically porous texture and good mechanical strength. Highly dispersed Ti species can be incorporated in tetrahedral coordination the silica matrix. These characteristics allow the obtained ‘SiTi(HIPE)’ materials to reach high catalytic turnover in the epoxidation of cyclohexene. The monoliths can advantageously be used to run the reaction in continuous flow mode.<br>


2019 ◽  
Vol 11 (3) ◽  
pp. 03021-1-03021-5
Author(s):  
V. S. Bushkova ◽  
◽  
I. P. Yaremiy ◽  
B. K. Ostafiychuk ◽  
N. I. Riznychuk ◽  
...  

Author(s):  
L.M. Anovitz ◽  
A. Affolter ◽  
M.C. Cheshire ◽  
A.J. Rondinone ◽  
Lawrence F. Allard
Keyword(s):  
Sol Gel ◽  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1554
Author(s):  
Justinas Januskevicius ◽  
Zivile Stankeviciute ◽  
Dalis Baltrunas ◽  
Kęstutis Mažeika ◽  
Aldona Beganskiene ◽  
...  

In this study, an aqueous sol-gel synthesis method and subsequent dip-coating technique were applied for the preparation of yttrium iron garnet (YIG), yttrium iron perovskite (YIP), and terbium iron perovskite (TIP) bulk and thin films. The monophasic highly crystalline different iron ferrite powders have been synthesized using this simple aqueous sol-gel process displaying the suitability of the method. In the next step, the same sol-gel solution was used for the fabrication of coatings on monocrystalline silicon (100) using a dip-coating procedure. This resulted, likely due to substrate surface influence, in all coatings having mixed phases of both garnet and perovskite. Thermogravimetric (TG) analysis of the precursor gels was carried out. All the samples were investigated by X-ray powder diffraction (XRD) analysis. The coatings were also investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Mössbauer spectroscopy. Magnetic measurements were also carried out.


Sign in / Sign up

Export Citation Format

Share Document