Loading Rate Effect on Tensile Failure Behavior of Gelatins under Mode I

Author(s):  
Paul Moy ◽  
Mark Foster ◽  
C. Allan Gunnarsson ◽  
Tusit Weerasooriya
2020 ◽  
Vol 240 ◽  
pp. 117681
Author(s):  
Mehran Aziminezhad ◽  
Sahand Mardi ◽  
Pouria Hajikarimi ◽  
Fereidoon Moghadas Nejad ◽  
Amir H. Gandomi

1993 ◽  
Vol 333 ◽  
Author(s):  
Maury E. Morgenstein ◽  
Don L. Shettel

ABSTRACTObsidian and basaltic glass are opposite end-members of natural volcanic glass compositions. Syngenetic and diagenetic tensile failure in basaltic glass (low silica glass) is pervasive and provides abundant alteration fronts deep into the glass structure. Perlitic fracturing in obsidian (high silica glass) limits the alteration zones to an “onion skin” geometry. Borosilicate waste glass behaves similarly to the natural analog of basaltic glass (sideromelane).During geologic time, established and tensile fracture networks form glass cells (a three-dimensional reticulated pattern) where the production of new fracture surfaces increases through time by geometric progression. This suggests that borosilicate glass monoliths will eventually become rubble. Rates of reaction appear to double for every 12C° of temperature increase. Published leach rates suggest that the entire inventory of certain radionuclides may be released during the 10,000 year regulatory time period. Steam alteration prior to liquid attack combined with pervasive deep tensile failure behavior may suggest that the glass waste form is not license defensible without a metallic- and/or ceramic-type composite barrier as an overpack.


2021 ◽  
Vol 887 ◽  
pp. 116-122
Author(s):  
A.A. Bryansky ◽  
O.V. Bashkov ◽  
Daria P. Malysheva ◽  
Denis B. Solovev

The paper presents the results of the study of registered acoustic emission (AE) parameters during static deformation and damaging of polymer composite materials (PCM). Mechanical tests were done by a static tension and a static three-point bend, accompanied by an acoustic emission method. The assessment of the loading rate effect on defects formation processes was done by additional static tension test at rate equal half of recommended by the standard and static three-point bend test at rate ten times lower than that calculated by the standard. Clustering by frequency components of the recorded AE signals with a self-organizing Kohonen map was performed. The characteristics of the types of PCM structure damage by the centroids of the obtained clusters are given. Based on the clusters accumulation during mechanical tests, the stages of damage formation for static tension and static three-point bend, the loading rate effect on the process of damage formation are described.


Sign in / Sign up

Export Citation Format

Share Document