Aerobic granular sludge treating high strength citrus wastewater: Analysis of pH and organic loading rate effect on kinetics, performance and stability

2018 ◽  
Vol 214 ◽  
pp. 23-35 ◽  
Author(s):  
Santo Fabio Corsino ◽  
Daniele Di Trapani ◽  
Michele Torregrossa ◽  
Gaspare Viviani
2004 ◽  
Vol 49 (11-12) ◽  
pp. 41-46 ◽  
Author(s):  
N. Schwarzenbeck ◽  
R. Erley ◽  
P.A. Wilderer

Aerobic granular sludge was successfully cultivated in a lab-scale SBR-system treating malting wastewater with a high content of particulate organic matter (0.9 gTSS/L). At an organic loading rate (CODtotal) of 3.4 kg/(m3·d) an average removal efficiency of 50% in CODtotal and 80% in CODdissolved was achieved. Fractionation of the COD by means of particle size showed that particles with a diameter less than 25–50 μm could be removed at 80% efficiency, whereas particles bigger than 50 μm were only removed at 40% efficiency. Tracer experiments revealed a dense sessile protozoa population covering the granules. The protozoa appeared to be responsible for primary particle uptake from the wastewater.


2006 ◽  
Vol 53 (9) ◽  
pp. 79-85 ◽  
Author(s):  
Z.H. Li ◽  
T. Kuba ◽  
T. Kusuda

In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g−1. However, the sludge volume index of short settling time (e.g. SVI10 – 10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.


2006 ◽  
Vol 54 (1) ◽  
pp. 139-146 ◽  
Author(s):  
J.C. Williams ◽  
F.L. de los Reyes

A novel annular gap reactor was designed to create a controlled shear environment in which aerobic granular sludge could be developed. The bacterial and eukaryal community structures during two aerobic granular sludge experiments were tracked using denaturing gradient gel electrophoresis (DGGE). The first granule cultivation experiment, using an organic loading rate of 1.6 kg/m3d COD, resulted in biomass that was dominated by filamentous bacteria and Zoogloea ramigera colonies. A second experiment with a higher organic loading rate of 6 kg/m3d COD developed a granule-like morphology but was ultimately dominated by filamentous fungi. Species identification via DGGE band purification and DNA sequencing closely matched the observed sludge morphology and behavior.


2017 ◽  
Vol 46 (12) ◽  
pp. 2497-2506 ◽  
Author(s):  
Nik Azimatolakma Awang ◽  
Md Ghazaly Shaaban ◽  
Choon Weng Lee ◽  
Bong Chui Wei

2015 ◽  
Vol 182 ◽  
pp. 314-322 ◽  
Author(s):  
Bei Long ◽  
Chang-zhu Yang ◽  
Wen-hong Pu ◽  
Jia-kuan Yang ◽  
Fu-biao Liu ◽  
...  

2000 ◽  
Vol 42 (12) ◽  
pp. 115-121 ◽  
Author(s):  
B. Wang ◽  
Y. Shen

A study on the performance of an Anaerobic Baffled Reactor(ABR) as a hydrolysis-acidogenesis unit in treating the mixed wastewater of landfill leachate and municipal sewage in different volumetric ratios was carried out. The results showed that ABR substantially improved the biological treatability of the mixed wastewater by increasing its BOD5/COD ratio to 0.4–0.6 from the initial values of 0.15–0.3. The formation of bar-shaped granular sludge of 0.5–5 mm both in diameter and length with an SVI of 7.5–14.2 ml/g was observed in all compartments of the ABR when the organic loading rate reached 4.71 kgCOD/m3 · d. The effects of the ratios of NH4+-N/COD and COD/TP in mixed wastewater on the operational performance were also studied, from which it was found that a reasonable NH4+-N/COD ratio should be lower than 0.02, and the phosphorus supplement was needed when the volumetric ratio was higher than 4:6 for stable operation of ABR.


Sign in / Sign up

Export Citation Format

Share Document