Load Balancing in Single Channel and Star Network Configurations

Author(s):  
Hisao Kameda ◽  
Jie Li ◽  
Chonggun Kim ◽  
Yongbing Zhang
Author(s):  
P. Trebbia ◽  
P. Ballongue ◽  
C. Colliex

An effective use of electron energy loss spectroscopy for chemical characterization of selected areas in the electron microscope can only be achieved with the development of quantitative measurements capabilities.The experimental assembly, which is sketched in Fig.l, has therefore been carried out. It comprises four main elements.The analytical transmission electron microscope is a conventional microscope fitted with a Castaing and Henry dispersive unit (magnetic prism and electrostatic mirror). Recent modifications include the improvement of the vacuum in the specimen chamber (below 10-6 torr) and the adaptation of a new electrostatic mirror.The detection system, similar to the one described by Hermann et al (1), is located in a separate chamber below the fluorescent screen which visualizes the energy loss spectrum. Variable apertures select the electrons, which have lost an energy AE within an energy window smaller than 1 eV, in front of a surface barrier solid state detector RTC BPY 52 100 S.Q. The saw tooth signal delivered by a charge sensitive preamplifier (decay time of 5.10-5 S) is amplified, shaped into a gaussian profile through an active filter and counted by a single channel analyser.


1968 ◽  
Vol 11 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Lois Joan Sanders

A tongue pressure unit for measurement of lingual strength and patterns of tongue pressure is described. It consists of a force displacement transducer, a single channel, direct writing recording system, and a specially designed tongue pressure disk, head stabilizer, and pressure unit holder. Calibration with known weights indicated an essentially linear and consistent response. An evaluation of subject reliability in which 17 young adults were tested on two occasions revealed no significant difference in maximum pressure exerted during the two test trials. Suggestions for clinical and research use of the instrumentation are noted.


Author(s):  
Shailendra Raghuvanshi ◽  
Priyanka Dubey

Load balancing of non-preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose an algorithm named honey bee behavior inspired load balancing, which aims to achieve well balanced load across virtual machines for maximizing the throughput. The proposed algorithm also balances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal. We have compared the proposed algorithm with existing load balancing and scheduling algorithms. The experimental results show that the algorithm is effective when compared with existing algorithms. Our approach illustrates that there is a significant improvement in average execution time and reduction in waiting time of tasks on queue using workflowsim simulator in JAVA.


Sign in / Sign up

Export Citation Format

Share Document