Optimising Lossless Co-encoding of Wavelet Coefficients for Entropy Encoding

Author(s):  
Øyvind Strømme
2018 ◽  
Author(s):  
◽  
Xiaobo Jiang

An image coding algorithm, SLCCA Plus, is introduced in this dissertation. SLCCA Plus is a wavelet-based subband coding method. In wavelet-based subband coding, the input images will go through a wavelet transform and be decomposed into wavelet subband pyramids. Then the characteristics of the wavelet coefficients within and among subbands will be utilized to removing the redundancy. The rest information will be organized and go through entropy encoding. SLCCA Plus contains a series improvement method to the SLCCA. Before SLCCA, there are three top-ranked wavelet image coders. Namely, Embedded Zerotree Wavelet coder (EZW), Morphological Representation of Wavelet Date (MEWD), and Set Partitioning in Hierarchical Trees (SPIHT). They exploit either inter-subband relation among zero wavelet coefficients or within-subband clustering. SLCCA, on the other hand, outperforms these three coders by exploring both the inter- subband coefficients relations and within-subband clustering of significant wavelet coefficients. SLCCA Plus strengthens SLCCA in the following aspects: Intelligence quantization, enhanced cluster filter, potential-significant shared-zero, and improved context models. The purpose of the first three improvements is to remove redundancy information further while keeping the image error as low as possible. As a result, they achieve a better trade-off between bit cost and image quality. Moreover, the improved context lowers the entropy by refining the classification of symbols in cluster sequence and magnitude bit-planes. Lower entropy means the adaptive arithmetic coding can achieve a better coding gain. For performance evaluation, SLCCA Plus is compared to SLCCA and JPEG2000. On average, SLCCA Plus achieves 7% bit saving over JPEG 2000 and 4% over SLCCA. The results comparison shows that SLCCA Plus shows more texture and edge details at a lower bitrate.


2007 ◽  
Vol 14 (1) ◽  
pp. 79-88 ◽  
Author(s):  
D. V. Divine ◽  
F. Godtliebsen

Abstract. This study proposes and justifies a Bayesian approach to modeling wavelet coefficients and finding statistically significant features in wavelet power spectra. The approach utilizes ideas elaborated in scale-space smoothing methods and wavelet data analysis. We treat each scale of the discrete wavelet decomposition as a sequence of independent random variables and then apply Bayes' rule for constructing the posterior distribution of the smoothed wavelet coefficients. Samples drawn from the posterior are subsequently used for finding the estimate of the true wavelet spectrum at each scale. The method offers two different significance testing procedures for wavelet spectra. A traditional approach assesses the statistical significance against a red noise background. The second procedure tests for homoscedasticity of the wavelet power assessing whether the spectrum derivative significantly differs from zero at each particular point of the spectrum. Case studies with simulated data and climatic time-series prove the method to be a potentially useful tool in data analysis.


ETRI Journal ◽  
2007 ◽  
Vol 29 (4) ◽  
pp. 530-532 ◽  
Author(s):  
María del Mar Elena ◽  
Jose Manuel Quero ◽  
Inmaculada Borrego

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Aidong Xu ◽  
Wenqi Huang ◽  
Peng Li ◽  
Huajun Chen ◽  
Jiaxiao Meng ◽  
...  

Aiming at improving noise reduction effect for mechanical vibration signal, a Gaussian mixture model (SGMM) and a quantum-inspired standard deviation (QSD) are proposed and applied to the denoising method using the thresholding function in wavelet domain. Firstly, the SGMM is presented and utilized as a local distribution to approximate the wavelet coefficients distribution in each subband. Then, within Bayesian framework, the maximum a posteriori (MAP) estimator is employed to derive a thresholding function with conventional standard deviation (CSD) which is calculated by the expectation-maximization (EM) algorithm. However, the CSD has a disadvantage of ignoring the interscale dependency between wavelet coefficients. Considering this limit for the CSD, the quantum theory is adopted to analyze the interscale dependency between coefficients in adjacent subbands, and the QSD for noise-free wavelet coefficients is presented based on quantum mechanics. Next, the QSD is constituted for the CSD in the thresholding function to shrink noisy coefficients. Finally, an application in the mechanical vibration signal processing is used to illustrate the denoising technique. The experimental study shows the SGMM can model the distribution of wavelet coefficients accurately and QSD can depict interscale dependency of wavelet coefficients of true signal quite successfully. Therefore, the denoising method utilizing the SGMM and QSD performs better than others.


2013 ◽  
Vol 281 ◽  
pp. 47-50
Author(s):  
Zhi Hong Chen

In this paper we propose a new steganographic method, which based on wet paper codes and wavelet transformation. The method is designed to embed secret messages in images' wavelet coefficients and depends on images' texture characters in local neighborhood. The receivers can extract secret bits from carrier images only by some matrix multiplications without knowing the formulas written by senders, which further improves steganographic security and minimizes the impact of embedding changes. The experimental results show that our proposed method has good robust and visual concealment performance and proves out it's a practical steganographic algorithm.


Sign in / Sign up

Export Citation Format

Share Document