Denoising algorithm with multiple thresholds based on the relativity exponents of wavelet coefficients

Author(s):  
Rui-zhen Zhao ◽  
Zhan-yi Hu
2007 ◽  
Vol 14 (1) ◽  
pp. 79-88 ◽  
Author(s):  
D. V. Divine ◽  
F. Godtliebsen

Abstract. This study proposes and justifies a Bayesian approach to modeling wavelet coefficients and finding statistically significant features in wavelet power spectra. The approach utilizes ideas elaborated in scale-space smoothing methods and wavelet data analysis. We treat each scale of the discrete wavelet decomposition as a sequence of independent random variables and then apply Bayes' rule for constructing the posterior distribution of the smoothed wavelet coefficients. Samples drawn from the posterior are subsequently used for finding the estimate of the true wavelet spectrum at each scale. The method offers two different significance testing procedures for wavelet spectra. A traditional approach assesses the statistical significance against a red noise background. The second procedure tests for homoscedasticity of the wavelet power assessing whether the spectrum derivative significantly differs from zero at each particular point of the spectrum. Case studies with simulated data and climatic time-series prove the method to be a potentially useful tool in data analysis.


2021 ◽  
Vol 10 (11) ◽  
pp. 2415
Author(s):  
Yasaman Vali ◽  
Jenny Lee ◽  
Jérôme Boursier ◽  
René Spijker ◽  
Joanne Verheij ◽  
...  

(1) Background: FibroTest™ is a multi-marker panel, suggested by guidelines as one of the surrogate markers with acceptable performance for detecting fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). A number of studies evaluating this test have been published after publication of the guidelines. This study aims to produce summary estimates of FibroTest™ diagnostic accuracy. (2) Methods: Five databases were searched for studies that evaluated FibroTest™ against liver biopsy as the reference standard in NAFLD patients. Two authors independently screened the references, extracted data, and assessed the quality of included studies. Meta-analyses of the accuracy in detecting different levels of fibrosis were performed using the bivariate random-effects model and the linear mixed-effects multiple thresholds model. (3) Results: From ten included studies, seven were eligible for inclusion in our meta-analysis. Five studies were included in the meta-analysis of FibroTest™ in detecting advanced fibrosis and five in significant fibrosis, resulting in an AUC of 0.77 for both target conditions. The meta-analysis of three studies resulted in an AUC of 0.69 in detecting any fibrosis, while analysis of three other studies showed higher accuracy in cirrhosis (AUC: 0.92). (4) Conclusions: Our meta-analysis showed acceptable performance (AUC > 0.80) of FibroTest™ only in detecting cirrhosis. We observed more limited performance of the test in detecting significant and advanced fibrosis in NAFLD patients. Further primary studies with high methodological quality are required to validate the reliability of the test for detecting different fibrosis levels and to compare the performance of the test in different settings.


ETRI Journal ◽  
2007 ◽  
Vol 29 (4) ◽  
pp. 530-532 ◽  
Author(s):  
María del Mar Elena ◽  
Jose Manuel Quero ◽  
Inmaculada Borrego

2016 ◽  
Vol 25 (4) ◽  
pp. 473-513 ◽  
Author(s):  
Salima Ouadfel ◽  
Abdelmalik Taleb-Ahmed

AbstractThresholding is the easiest method for image segmentation. Bi-level thresholding is used to create binary images, while multilevel thresholding determines multiple thresholds, which divide the pixels into multiple regions. Most of the bi-level thresholding methods are easily extendable to multilevel thresholding. However, the computational time will increase with the increase in the number of thresholds. To solve this problem, many researchers have used different bio-inspired metaheuristics to handle the multilevel thresholding problem. In this paper, optimal thresholds for multilevel thresholding in an image are selected by maximizing three criteria: Between-class variance, Kapur and Tsallis entropy using harmony search (HS) algorithm. The HS algorithm is an evolutionary algorithm inspired from the individual improvisation process of the musicians in order to get a better harmony in jazz music. The proposed algorithm has been tested on a standard set of images from the Berkeley Segmentation Dataset. The results are then compared with that of genetic algorithm (GA), particle swarm optimization (PSO), bacterial foraging optimization (BFO), and artificial bee colony algorithm (ABC). Results have been analyzed both qualitatively and quantitatively using the fitness value and the two popular performance measures: SSIM and FSIM indices. Experimental results have validated the efficiency of the HS algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. Furthermore, ABC has shown to be the most stable when the dimension of the problem is too high.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Aidong Xu ◽  
Wenqi Huang ◽  
Peng Li ◽  
Huajun Chen ◽  
Jiaxiao Meng ◽  
...  

Aiming at improving noise reduction effect for mechanical vibration signal, a Gaussian mixture model (SGMM) and a quantum-inspired standard deviation (QSD) are proposed and applied to the denoising method using the thresholding function in wavelet domain. Firstly, the SGMM is presented and utilized as a local distribution to approximate the wavelet coefficients distribution in each subband. Then, within Bayesian framework, the maximum a posteriori (MAP) estimator is employed to derive a thresholding function with conventional standard deviation (CSD) which is calculated by the expectation-maximization (EM) algorithm. However, the CSD has a disadvantage of ignoring the interscale dependency between wavelet coefficients. Considering this limit for the CSD, the quantum theory is adopted to analyze the interscale dependency between coefficients in adjacent subbands, and the QSD for noise-free wavelet coefficients is presented based on quantum mechanics. Next, the QSD is constituted for the CSD in the thresholding function to shrink noisy coefficients. Finally, an application in the mechanical vibration signal processing is used to illustrate the denoising technique. The experimental study shows the SGMM can model the distribution of wavelet coefficients accurately and QSD can depict interscale dependency of wavelet coefficients of true signal quite successfully. Therefore, the denoising method utilizing the SGMM and QSD performs better than others.


2013 ◽  
Vol 281 ◽  
pp. 47-50
Author(s):  
Zhi Hong Chen

In this paper we propose a new steganographic method, which based on wet paper codes and wavelet transformation. The method is designed to embed secret messages in images' wavelet coefficients and depends on images' texture characters in local neighborhood. The receivers can extract secret bits from carrier images only by some matrix multiplications without knowing the formulas written by senders, which further improves steganographic security and minimizes the impact of embedding changes. The experimental results show that our proposed method has good robust and visual concealment performance and proves out it's a practical steganographic algorithm.


Sign in / Sign up

Export Citation Format

Share Document