A Vision System for Analysis and Classification of Industrial Flames

1990 ◽  
pp. 448-457
Author(s):  
J. P. Costeira ◽  
J. P. Fernandes ◽  
M. V. Heitor ◽  
J. Sentieiro ◽  
J. P. Simões ◽  
...  
Keyword(s):  
Author(s):  
Nidhi Rajesh Mavani ◽  
Jarinah Mohd Ali ◽  
Suhaili Othman ◽  
M. A. Hussain ◽  
Haslaniza Hashim ◽  
...  

AbstractArtificial intelligence (AI) has embodied the recent technology in the food industry over the past few decades due to the rising of food demands in line with the increasing of the world population. The capability of the said intelligent systems in various tasks such as food quality determination, control tools, classification of food, and prediction purposes has intensified their demand in the food industry. Therefore, this paper reviews those diverse applications in comparing their advantages, limitations, and formulations as a guideline for selecting the most appropriate methods in enhancing future AI- and food industry–related developments. Furthermore, the integration of this system with other devices such as electronic nose, electronic tongue, computer vision system, and near infrared spectroscopy (NIR) is also emphasized, all of which will benefit both the industry players and consumers.


2019 ◽  
Vol 8 (1) ◽  
pp. 1070-1083
Author(s):  
Roberto Fernandes Ivo ◽  
Douglas de Araújo Rodrigues ◽  
José Ciro dos Santos ◽  
Francisco Nélio Costa Freitas ◽  
Luis Flaávio Gaspar Herculano ◽  
...  

Author(s):  
Joshua G. McNeil ◽  
Brian Y. Lattimer

Robotic firefighting is an area of increased focus as a way of limiting the exposure of firefighters to hazardous environments. A suppression system must incorporate multiple functionalities to allow for closed-loop firefighting control. One area of development is classifying water spray as a way of correcting errors between suppressant placement and fire location. An IR vision system is presented which is capable of identifying water. Image segmentation is performed, followed by a process that classifies regions of interest as water or non-water objects. A probabilistic classification method, using Naïve Bayes classifier, was applied on a varied dataset of differing water temperatures and sprays. Objects were segmented using frame differencing with image intensity and difference thresholds. Segments were manually labeled to create a training dataset. Precision, recall, F-measure, and G-measure results of the classifier on a separate test dataset ranged from 86.1-97.4% for classifying water objects using the test dataset with water classification alone having 94.2-97.4% accuracy.


Computers ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 6 ◽  
Author(s):  
Sajad Sabzi ◽  
Razieh Pourdarbani ◽  
Juan Ignacio Arribas

A computer vision system for automatic recognition and classification of five varieties of plant leaves under controlled laboratory imaging conditions, comprising: 1–Cydonia oblonga (quince), 2–Eucalyptus camaldulensis dehn (river red gum), 3–Malus pumila (apple), 4–Pistacia atlantica (mt. Atlas mastic tree) and 5–Prunus armeniaca (apricot), is proposed. 516 tree leaves images were taken and 285 features computed from each object including shape features, color features, texture features based on the gray level co-occurrence matrix, texture descriptors based on histogram and moment invariants. Seven discriminant features were selected and input for classification purposes using three classifiers: hybrid artificial neural network–ant bee colony (ANN–ABC), hybrid artificial neural network–biogeography based optimization (ANN–BBO) and Fisher linear discriminant analysis (LDA). Mean correct classification rates (CCR), resulted in 94.04%, 89.23%, and 93.99%, for hybrid ANN–ABC; hybrid ANN–BBO; and LDA classifiers, respectively. Best classifier mean area under curve (AUC), mean sensitivity, and mean specificity, were computed for the five tree varieties under study, resulting in: 1–Cydonia oblonga (quince) 0.991 (ANN–ABC), 95.89% (ANN–ABC), 95.91% (ANN–ABC); 2–Eucalyptus camaldulensis dehn (river red gum) 1.00 (LDA), 100% (LDA), 100% (LDA); 3–Malus pumila (apple) 0.996 (LDA), 96.63% (LDA), 94.99% (LDA); 4–Pistacia atlantica (mt. Atlas mastic tree) 0.979 (LDA), 91.71% (LDA), 82.57% (LDA); and 5–Prunus armeniaca (apricot) 0.994 (LDA), 88.67% (LDA), 94.65% (LDA), respectively.


2006 ◽  
Vol 15 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Tsuyoshi Okayama ◽  
Jiao Qiao ◽  
Hiroe Tanaka ◽  
Naoshi Kondo ◽  
Sakae Shibusawa

Author(s):  
D T Pham ◽  
E J Bayro-Corrochano

This paper discusses the application of a back-propagation multi-layer perceptron and a learning vector quantization network to the classification of defects in valve stem seals for car engines. Both networks were trained with vectors containing descriptive attributes of known flaws. These attribute vectors (‘signatures’) were extracted from images of the seals captured by an industrial vision system. The paper describes the hardware and techniques used and the results obtained.


2002 ◽  
Vol 11 (5) ◽  
pp. 525-535 ◽  
Author(s):  
Philippe Fuchs ◽  
Fawzi Nashashibi ◽  
Didier Maman

In this paper, we describe some use of mixed reality as a new assistance for performing teleoperation tasks in remote scenes. We will start by a brief classification of augmented reality. This paper then describes the principle of our mixed reality system in teleoperation. It tackles the problem of scene registration using a man–machine cooperative and multisensory vision system. The system provides the operator with powerful sensorial feedback as well as appropriate tools to build (and update automatically) the geometric model of the perceived scene. We describe a new interactive approach combining image analysis and mixed reality techniques for assisted 3D geometric and semantic modeling. At the end of this paper, we describe applications in nuclear plants with results in 3D positioning.


2013 ◽  
Vol 278-280 ◽  
pp. 727-730
Author(s):  
Xiai Chen ◽  
Shuang Ke ◽  
Ling Wang

A machine vision system was developed to investigate the detection of watermelon seeds exterior quality. The main characteristics of watermelon seeds appearance including area, perimeter, roughness and minimum enclosing rectangle were calculated by image analysis. Least square support vector machine optimized by genetic algorithm was applied for the classification of watermelon seeds exterior quality, and the broken seeds, normal seeds and high-quality seeds were distinguished finally. The surface irregularities defects of watermelon seeds were detected by machine vision grid laser. The experimental results show that the watermelon seeds exterior quality could be well detected and classified by machine vision based on least squares support vector machine.


Sign in / Sign up

Export Citation Format

Share Document