Finite Automata as Regular Language Recognizers

Author(s):  
Stefano Crespi Reghizzi ◽  
Luca Breveglieri ◽  
Angelo Morzenti
2010 ◽  
Vol 21 (05) ◽  
pp. 843-858 ◽  
Author(s):  
ANDREAS MALCHER ◽  
CARLO MEREGHETTI ◽  
BEATRICE PALANO

Iterative arrays (IAs) are a parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this paper, realtime-IAs with sublinear space bounds are used to recognize formal languages. The existence of an infinite proper hierarchy of space complexity classes between logarithmic and linear space bounds is proved. Some decidability questions on logarithmically space bounded realtime-IAs are investigated, and an optimal logarithmic space lower bound for non-regular language recognition on realtime-IAs is shown. Finally, some non-recursive trade-offs between space bounded realtime-IAs are emphasized.


2007 ◽  
Vol 18 (06) ◽  
pp. 1407-1416 ◽  
Author(s):  
KAI SALOMAA ◽  
PAUL SCHOFIELD

It is known that the neighborhood of a regular language with respect to an additive distance is regular. We introduce an additive weighted finite automaton model that provides a conceptually simple way to reprove this result. We consider the state complexity of converting additive weighted finite automata to deterministic finite automata. As our main result we establish a tight upper bound for the state complexity of the conversion.


2019 ◽  
Vol 30 (01) ◽  
pp. 115-134 ◽  
Author(s):  
Michal Hospodár ◽  
Galina Jirásková ◽  
Peter Mlynárčik

We examine the descriptional complexity of the forever operator, which assigns the language [Formula: see text] to a regular language [Formula: see text], and we investigate the trade-offs between various models of finite automata. We consider complete and partial deterministic finite automata, nondeterministic finite automata with single or multiple initial states, alternating, and Boolean finite automata. We assume that the argument and the result of this operation are accepted by automata belonging to one of these six models. We investigate all possible trade-offs and provide a tight upper bound for 32 of 36 of them. The most interesting result is the trade-off from nondeterministic to deterministic automata given by the Dedekind number [Formula: see text]. We also prove that the nondeterministic state complexity of [Formula: see text] is [Formula: see text] which solves an open problem stated by Birget [The state complexity of [Formula: see text] and its connection with temporal logic, Inform. Process. Lett. 58 (1996) 185–188].


2012 ◽  
Vol 23 (01) ◽  
pp. 87-98
Author(s):  
ZOLTÁN ÉSIK

It is known that an ordinal is the order type of the lexicographic ordering of a regular language if and only if it is less than ωω. We design a polynomial time algorithm that constructs, for each well-ordered regular language L with respect to the lexicographic ordering, given by a deterministic finite automaton, the Cantor Normal Form of its order type. It follows that there is a polynomial time algorithm to decide whether two deterministic finite automata accepting well-ordered regular languages accept isomorphic languages. We also give estimates on the state complexity of the smallest "ordinal automaton" representing an ordinal less than ωω, together with an algorithm that translates each such ordinal to an automaton.


2016 ◽  
Vol 27 (07) ◽  
pp. 863-878 ◽  
Author(s):  
Yo-Sub Han ◽  
Sang-Ki Ko ◽  
Timothy Ng ◽  
Kai Salomaa

It is well known that the resulting language obtained by inserting a regular language to a regular language is regular. We study the nondeterministic and deterministic state complexity of the insertion operation. Given two incomplete DFAs of sizes m and n, we give an upper bound (m+2)·2mn−m−1·3m and find a lower bound for an asymp-totically tight bound. We also present the tight nondeterministic state complexity by a fooling set technique. The deterministic state complexity of insertion is 2Θ(mn) and the nondeterministic state complexity of insertion is precisely mn+2m, where m and n are the size of input finite automata. We also consider the state complexity of insertion in the case where the inserted language is bifix-free or non-returning.


2020 ◽  
Vol 175 (1-4) ◽  
pp. 173-185
Author(s):  
Fabian Frei ◽  
Juraj Hromkovič ◽  
Juhani Karhumäki

It is well known that the set of powers of any given order, for example squares, in a regular language need not be regular. Nevertheless, finite automata can identify them via their roots. More precisely, we recall that, given a regular language L, the set of square roots of L is regular. The same holds true for the nth roots for any n and for the set of all nontrivial roots; we give a concrete construction for all of them. Using the above result, we obtain decision algorithms for many natural problems on powers. For example, it is decidable, given two regular languages, whether they contain the same number of squares at each length. Finally, we give an exponential lower bound on the size of automata identifying powers in regular languages. Moreover, we highlight interesting behavior differences between taking fractional powers of regular languages and taking prefixes of a fractional length. Indeed, fractional roots in a regular language can typically not be identified by finite automata.


Author(s):  
Stefano Crespi Reghizzi ◽  
Luca Breveglieri ◽  
Angelo Morzenti

2017 ◽  
Vol 28 (05) ◽  
pp. 503-522
Author(s):  
Holger Bock Axelsen ◽  
Markus Holzer ◽  
Martin Kutrib

Recently, a method to decide the NL-complete problem of whether the language accepted by a given deterministic finite automaton (DFA) can also be accepted by some reversible deterministic finite automaton (REV-DFA) has been derived. Here, we show that the corresponding problem for nondeterministic finite automata (NFA) is PSPACE-complete. The recent DFA method essentially works by minimizing the DFA and inspecting it for a forbidden pattern. We here study the degree of irreversibility for a regular language, the minimal number of such forbidden patterns necessary in any DFA accepting the language, and show that the degree induces a strict infinite hierarchy of language families. We examine how the degree of irreversibility behaves under the usual language operations union, intersection, complement, concatenation, and Kleene star, showing tight bounds (some asymptotically) on the degree.


Author(s):  
Fabian Frei ◽  
Juraj Hromkovič ◽  
Juhani Karhumäki

It is well known that the set of powers of any given order, for example squares, in a regular language need not be regular. Nevertheless, finite automata can identify them via their roots. More precisely, we recall that, given a regular language L, the set of square roots of L is regular. The same holds true for the nth roots for any n and for the set of all nontrivial roots; we give a concrete construction for all of them. Using the above result, we obtain decision algorithms for many natural problems on powers. For example, it is decidable, given two regular languages, whether they contain the same number of squares at each length. Finally, we give an exponential lower bound on the size of automata identifying powers in regular languages. Moreover, we highlight interesting behavior differences between taking fractional powers of regular languages and taking prefixes of a fractional length. Indeed, fractional roots in a regular language can typically not be identified by finite automata.


2021 ◽  
Vol 178 (3) ◽  
pp. 203-227
Author(s):  
Tomasz Jastrzab ◽  
Zbigniew J. Czech ◽  
Wojciech Wieczorek

The goal of this paper is to develop the parallel algorithms that, on input of a learning sample, identify a regular language by means of a nondeterministic finite automaton (NFA). A sample is a pair of finite sets containing positive and negative examples. Given a sample, a minimal NFA that represents the target regular language is sought. We define the task of finding an NFA, which accepts all positive examples and rejects all negative ones, as a constraint satisfaction problem, and then propose the parallel algorithms to solve the problem. The results of comprehensive computational experiments on the variety of inference tasks are reported. The question of minimizing an NFA consistent with a learning sample is computationally hard.


Sign in / Sign up

Export Citation Format

Share Document