Introduction to Besag (1974) Spatial Interaction and the Statistical Analysis of Lattice Systems

Author(s):  
Richard L. Smith
1987 ◽  
Vol 19 (9) ◽  
pp. 1261-1268 ◽  
Author(s):  
M Clarke ◽  
S Openshaw

Despite the advances made in the development of computer models of urban and regional systems the lack of an appropriate software package incorporating much of this work prevents the popularisation and widespread use of these methods. In statistical analysis the availability of packages such as SPSSX, GLIM, SAS, etc have enabled undergraduates, academics, and professionals to access easily a wide range of techniques. The authors feel that a similar type of package would have tremendous appeal both in the public and in the private sector. In this paper they outline their view of what this modelling package would consist of and how it could be constructed as a software system for a personal computer.


1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


Sign in / Sign up

Export Citation Format

Share Document