Role of Cell-Cycle Genes in the Regulation of Mammalian Meiosis

Author(s):  
Debra J. Wolgemuth ◽  
Valerie Besset ◽  
Dong Liu ◽  
Qi Zhang ◽  
Kunsoo Rhee
Keyword(s):  
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2521-2521
Author(s):  
Kanagaraju Ponnusamy ◽  
Maria-Myrsini Tzioni ◽  
Murshida Begum ◽  
Mark E Robinson ◽  
Valentina S Caputo ◽  
...  

ZBP1 is an inducible nucleic acid (NA) sensor that is activated when pathogen NA bind to its Zα and Zβ domains. ZBP1 is required for TBK1-dependent phosphorylation of the transcription factor IRF3 (pIRF3) followed by its direct activation of type I interferon genes. However, the role, if any, of ZBP1 in tumour biology is not known. By searching for genes selectively expressed in multiple myeloma (MM) we identified ZBP1 mRNA expressed in 29 MM cell lines (MMCL) but not in >1000 other cancer cell lines (CCLE dataset); ZBP1 was expressed in all 766 patient myeloma PC (CoMMpass dataset) but not in normal blood cells (Blueprint) or 53 healthy tissues (GTex). We confirmed expression of ZBP1 mRNA and/or protein in MMCL, primary human and murine germinal centre B (GCB) and plasma cells (PC) as well as in myeloma PC. By inducing T cell-dependent humoral immune responses after ip alum-NP-KLH immunisation, we explored the role of selective and constitutive expression of Zbp1 in GCB to PC transition. We found no differences in the frequency of splenic GCB cells and PC between control WT and Zbp1-/- mice and in GCB cell frequency between immunised WT and Zbp1-/- mice. However, compared to WT, the increase in PC frequency in immunised Zbp1-/- mice was 50% lower (n=10/group, p<0.0001) commensurate with a 40% (n=6/group, p<0.01), lower increase in NP-KLH-specific IgG but not IgM levels in Zbp1-/- mice. These findings suggest that although Zbp1 is not required for GCB cell and PC development it is required for optimal, T cell-dependent humoral immune responses. To explore the function of ZBP1 in MM we depleted by 2 lentiviral shRNAs either isoform 1 (contains both Zα and Zβ domains; shRNA1) or both isoform 1 and isoform 2 (latter lacks Zα domain; shRNA2). Both shRNAs were toxic to all 5 MMCL tested suggesting that isoform 1 but not isoform 2 is essential for myeloma cell survival. This effect was specific because survival of K562 cells, which lack expression of ZBP1, was not affected by either shRNA and exogenous ZBP1 cDNA rescued cell death of ZBP1-depleted myeloma cells. Dox-induced ZBP1 depletion was toxic to MMCL in vitro and significantly inhibited myeloma cell growth in a subcutaneous NSG model of the MMCL H929 and MM.1S. Together, these findings reveal a novel myeloma cell-specific ZBP1 dependency. Transcriptome analysis of ZBP1-depleted H929 and MM.1S cells showed amongst the significantly downregulated genes enrichment for the cell cycle control and DNA repair pathways consistent with a critical role of ZBP1 in promoting myeloma cell proliferation. Flow-cytometric analysis of ZBP1-depleted MMCL as well as of patient-derived myeloma PC revealed cell cycle arrest at the G0/1 phase and increasing apoptosis. Exploring potential links with IRF3, we first observed that unlike in non-malignant cells, IRF3 was constitutively phosphorylated in MMCL. Using protein-co-immunoprecipitation we found that endogenous ZBP1 interacts with IRF3 and TBK1 while upon co-transfection with different ZBP1 deletion mutants, ZBP1-IRF3 interaction required primarily the ZBP1, RHIM domain-containing, C-terminus. Further, while in ZBP1-depleted myeloma cells total IRF3 and TBK1 levels were not altered, pIRF3 and pTBK1 levels decreased thus showing a post-translational dependency of constitutive pIRF3 and pTBK1 on ZBP1. Finally, pharmacological inhibition of TBK1 resulted in decrease of pIRF3 without affecting total IRF3. Importantly, shRNA-mediated IRF3 depletion resulted in cell cycle arrest and death of MMCL. By integrating histone mark and in-house IRF3 ChiP-seq with transcriptome of IRF3-depleted MM.1S cells we identified 770 down- and 330 up-regulated genes predicted to be directly regulated by IRF3. Pathway enrichment analysis confirmed cell cycle as the most highly regulated by IRF3. Notably, we observed no direct or indirect regulation of the interferon genes (e.g., IFNA1, IFNB1) by IRF3. As well as the IRF3 motif, IRF3 cistrome analysis revealed significant enrichment for the distinct IRF4 motif. Integration of the IRF3/IRF4 cistromes identified >80% IRF3 binding regions are co-occupied by IRF4 and co-regulation of cell cycle genes. Further we validated IRF3-IRF4 interaction at the IRF4 super-enhancer by ChIP-re-ChIP. These data show a novel dependency in MM comprising constitutive activation of the ZBP1-IRF3 pathway and regulation of cell cycle and proliferation by IRF3 thus providing opportunities for therapeutic targeting. Disclosures Caputo: GSK: Research Funding. Auner:Amgen: Other: Consultancy and Research Funding; Takeda: Consultancy; Karyopharm: Consultancy. Karadimitris:GSK: Research Funding.


2020 ◽  
Author(s):  
Marina Nunes ◽  
Anelise Diniz Arantes ◽  
Renato Borges Tesser ◽  
Priscila Henriques da Silva ◽  
Leticia Rocha da Silva ◽  
...  

AbstractGerm cells emerge from the epiblast and migrate to the gonads, where they become gonocytes. The gonocytes are the precursors of the spermatogonial stem cells, but little is known about their differentiation. The rigid control of gonocyte proliferation, quiescence and pluripotency marker expression is crucial for spermatogonia development. We have previously suggested that cleaved caspase-3 (Casp3) might play a non-apoptotic role in gonocyte quiescence. Here we describe when rat fetal gonocyte enter mitotic arrest and show that Casp3 inhibition in these cells affects the expression of cell cycle genes. The expression of Ki67, p27Kip, Retinoblastoma 1 (pRb1), NANOG and CASP3 was investigated in 15, 17 and 19 days post coitum rat embryo gonads. The results show that Ki67 and pRB1 proteins are downregulated from 15 days post coitum to 19 days post coitum, whereas p27Kip, NANOG and CASP3 are upregulated. This suggests that rat germ cells start to enter quiescence around 15dpc and that CASP3 and NANOG seem to play a role in this process. CASP3 labelling formed a ring in gonocyte cytoplasm, which is clearly distinct from apoptotic cell labelling, and coincided with NANOG labelling. CASP3 inhibition lead to an increase of Pcna expression and to a decrease of p27kip and p21cip expression. These results suggest that cleaved CASP3 has a role in rat male germ cell development which can be related to the control of the cell cycle genes.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
Y S Tseng ◽  
M Y You ◽  
Y C Hsu ◽  
K C Yang

Abstract Background Although the adult mammalian heart fails to regenerate after injury, it is known that newborn mice within a week have full cardiac regenerative capacity. The molecular determinants underlying the disparate regenerative capacity between neonatal and adult mice, however, remain incompletely understood. Exploiting RNA sequencing in isolated cardiomyocytes from neonatal and adult mouse heart, we identified Cdh2, which encodes the adherence junction protein N-cadherin, as a potential novel mediator of cardiac regeneration. Cdh2 expression levels were much higher in neonatal, compared with adult, cardiomyocytes and showed a strong positive correlation with that of multiple cell cycle genes. N-cadherin has been reported to be essential for embryonic cardiac development; its role in cardiac regeneration, however, remains unknown. Purpose To determine the role of Cdh2 (N-cadherin) in cardiac regeneration and to investigate the underlying molecular mechanisms. Methods Apical resection in postnatal day 1 mice was used as a cardiac regenerative model. The in vitro gain/loss-of function studies of Cdh2/N-cadherin was performed in postnatal day 1 neonatal mouse cardiomyocytes (P1CM) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM). N-cadherin inhibitor exherin was used to study the effects of N-cadherin in vivo. Results Comparing to sham-operated control, Cdh2 was significantly upregulated in mouse cardiac apex and border zone following apical resection, which was accompanied with increased cardiomyocyte proliferation activity. In vitro, knocking down Cdh2 or inhibition of N-cadherin activity with exherin in P1CM significantly reduced the proliferative activity of cardiomyocytes, whereas overexpression of Cdh2 markedly increased the proliferation of P1CM. In addition, forced expression of Cdh2 resulted in significant upregulation of multiple cell cycle genes, including Ccnd1 (Cyclin D1) and Pcna (proliferating cell nuclear antigen), in P1CM. In vivo inhibition of N-cadherin in P1 neonatal mice with exherin following apical resection impaired cardiac regeneration and increased scar formation (Figure). Knocking down CDH2 in human iPSC-CMs significantly reduced the proliferative activity and the expression levels of cell cycle gene CCND1 in iPSC-CMs. Mechanistically, we demonstrated that the pro-mitotic effects of N-cadherin in cardiomyocytes were mediated, at least partially, by stabilizing β-catenin, a pro-mitotic transcription factor, through direct interaction with its cytoplasmic domain and/or inactivation of GSK3β, a critical component of β-catenin destruction complex. N-Cad blocker impairs heart regeneration Conclusion Our study uncovered a previously unrecognized role of Cdh2 (N-cadherin) in cardiomyocyte proliferation and cardiac regeneration. Enhancing cardiac expression or activity of N-cadherin, therefore, could be a potential novel therapeutic approach to promote cardiac regeneration and restore cardiac function in adult heart following injury.


2017 ◽  
Author(s):  
Shuyuan Zhang ◽  
Keijin Zhou ◽  
Xin Luo ◽  
Lin Li ◽  
Liem Nguyen ◽  
...  

AbstractMost cells in the liver are polyploid, but the functional role of polyploidy is unknown. Polyploidization normally occurs through cytokinesis failure and endoreduplication around the time of weaning. To interrogate the function of polyploidy while avoiding irreversible manipulations of essential cell cycle genes, we developed multiple orthogonal mouse models to transiently and potently alter liver ploidy. Premature weaning, as well as in vivo knockdown of E2f8 or Anln, allowed us to toggle between diploid and polyploid states. While there was no impact of ploidy alterations on liver function, metabolism, or regeneration, hyperpolyploid mice suppressed and hyperdiploid mice accelerated tumorigenesis in mutagen and high fat induced models. Mechanistically, the diploid state was more susceptible to Cas9-mediated tumor suppressor loss but was similarly susceptible to MYC oncogene activation, indicating that ploidy differentially protected the liver from distinct genomic aberrations. Our work suggests that polyploidy evolved to prevent malignant outcomes of liver injury.


2021 ◽  
Vol 49 (2) ◽  
pp. 805-814
Author(s):  
Christine R. Keenan

Haematopoiesis is the process by which multipotent haematopoietic stem cells are transformed into each and every type of terminally differentiated blood cell. Epigenetic silencing is critical for this process by regulating the transcription of cell-cycle genes critical for self-renewal and differentiation, as well as restricting alternative fate genes to allow lineage commitment and appropriate differentiation. There are two distinct forms of transcriptionally repressed chromatin: H3K9me3-marked heterochromatin and H3K27me3/H2AK119ub1-marked Polycomb (often referred to as facultative heterochromatin). This review will discuss the role of these distinct epigenetic silencing mechanisms in regulating normal haematopoiesis, how these contribute to age-related haematopoietic dysfunction, and the rationale for therapeutic targeting of these pathways in the treatment of haematological malignancies.


2008 ◽  
Vol 2 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Giuseppina D'Andrilli ◽  
Antonio Giordano ◽  
Alessandro Bovicelli

Author(s):  
Shamim Mushtaq

Uninhibited proliferation and abnormal cell cycle regulation are the hallmarks of cancer. The main role of cyclin dependent kinases is to regulate the cell cycle and cell proliferation. These protein kinases are frequently down regulated or up regulated in various cancers. Two CDK family members, CDK 11 and 12, have contradicting views about their roles in different cancers. For example, one study suggests that the CDK 11 isoforms, p58, inhibits growth of breast cancer whereas, the CDK 11 isoform, p110, is highly expressed in breast tumor. Studies regarding CDK 12 show variation of opinion towards different parts of the body, however there is a consensus that upregulation of cdk12 increases the risk of breast cancer. Hence, CDK 11 and CDK 12 need to be analyzed to confirm their mechanism and their role regarding therapeutics, prognostic value, and ethnicity in cancer. This article gives an outline on both CDKs of information known up to date from Medline, PubMed, Google Scholar and Web of Science search engines, which were explored and thirty relevant researches were finalized.


Sign in / Sign up

Export Citation Format

Share Document