scholarly journals Heterochromatin and Polycomb as regulators of haematopoiesis

2021 ◽  
Vol 49 (2) ◽  
pp. 805-814
Author(s):  
Christine R. Keenan

Haematopoiesis is the process by which multipotent haematopoietic stem cells are transformed into each and every type of terminally differentiated blood cell. Epigenetic silencing is critical for this process by regulating the transcription of cell-cycle genes critical for self-renewal and differentiation, as well as restricting alternative fate genes to allow lineage commitment and appropriate differentiation. There are two distinct forms of transcriptionally repressed chromatin: H3K9me3-marked heterochromatin and H3K27me3/H2AK119ub1-marked Polycomb (often referred to as facultative heterochromatin). This review will discuss the role of these distinct epigenetic silencing mechanisms in regulating normal haematopoiesis, how these contribute to age-related haematopoietic dysfunction, and the rationale for therapeutic targeting of these pathways in the treatment of haematological malignancies.

Author(s):  
Debra J. Wolgemuth ◽  
Valerie Besset ◽  
Dong Liu ◽  
Qi Zhang ◽  
Kunsoo Rhee
Keyword(s):  

2005 ◽  
Vol 7 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Carl R. Walkley ◽  
Matthew L. Fero ◽  
Wei-Ming Chien ◽  
Louise E. Purton ◽  
Grant A. McArthur

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2611-2611
Author(s):  
Raymond H Diep ◽  
Qingfei Jiang ◽  
Jane Isquith ◽  
Maria A. Zipeto ◽  
Jessica Pham ◽  
...  

Abstract Recent studies demonstrate the importance of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing mediated by adenosine deaminase acting on RNA1 (ADAR1) in normal fetal and adult hematopoiesis. RNA-sequencing studies have shown that elevated levels of the ADAR1 editase has emerged as a dominant driver of cancer progression and therapeutic resistance. Specifically, the deregulation of ADAR1 promotes the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to a therapy resistant blast crisis (BC) phase. Through the regulation of mRNA and microRNA (miRNA) stability, ADAR1 plays a pivotal role in embryonic development and stem cell regulation. We have previously shown that inflammation-responsive ADAR1 heavily contributes to stem cell differentiation and self-renewal in CML disease progression. Here, we describe a novel role of ADAR1 in cell cycle regulation of BC leukemia cells through regulation of miRNA biogenesis. To investigate the role of ADAR1 in miRNA regulation, we performed miRNome miScript PCR array analysis of 1008 miRNAs in cord blood CD34+ expressing hematopoietic stem and progenitor cells (HSPCs) overexpressing ADAR1 wild type (WT) and A-to-I editing deficient ADAR1 mutant. Overall, a total of 112 miRNAs were significantly differentially expressed following ADAR1 expression with cell cycle identified as the top cellular pathway significantly targeted by miRNAs regulated by ADAR1. Notably, ADAR1 editase activity inhibits the expression of miR-26a-5p, a tumor suppressor miRNA that is frequently downregulated in BC CML. ADAR1 inhibits miR-26a-5p through direct editing of the DROSHA cleavage site of primary miR-26a-5p, preventing miR-26a-5p maturation and processing. In normal hematopoietic progenitors, ADAR1-mediated inhibition of miR-26a results in repression of cyclin-dependent kinase inhibitor 1A (CDKN1A) expression indirectly via suppression of the polycomb repressive complex, enhancer of zeste homolog 2 (EZH2), thereby accelerating cell cycle transit. However, in BC CML progenitors, decreased EZH2 and increased CDKN1A oppose the cell cycle accelerating effect of ADAR1. Moreover, we found that the miR-26a targets a different set of mRNA in BC CML compared to cord blood HSPC and has divergent roles in cell cycle regulation. Lentiviral miR-26a overexpression reduced BC leukemia stem cell (LSC) dormancy in the bone marrow and reverses the functional effects of ADAR1, including inhibition of BC cell proliferation in vivo and impaired LSC self-renewal capacity as measured by colony forming assays. Our finding reveals the effects of ADAR1 in LSC generation through impairing biogenesis of cell cycle regulatory miRNAs. The deregulation of ADAR1 contributes to the malignant reprogramming of progenitors into dormant LSCs that are resistant to therapeutic treatments. Future development of ADAR1 inhibitors may be effective in the elimination of dormant BC CML LSCs that evade tyrosine kinase inhibitors. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
D. McGuinness ◽  
D. H. McGuinness ◽  
J. A. McCaul ◽  
P. G. Shiels

The Sirtuins are a family of orthologues of yeast Sir2 found in a wide range of organisms from bacteria to man. They display a high degree of conservation between species, in both sequence and function, indicative of their key biochemical roles. Sirtuins are heavily implicated in cell cycle, cell division, transcription regulation, and metabolism, which places the various family members at critical junctures in cellular metabolism. Typically, Sirtuins have been implicated in the preservation of genomic stability and in the prolongation of lifespan though many of their target interactions remain unknown. Sirtuins play key roles in tumourigenesis, as some have tumour-suppressor functions and others influence tumours through their control of the metabolic state of the cell. Their links to ageing have also highlighted involvement in various age-related and degenerative diseases. Here, we discuss the current understanding of the role of Sirtuins in age-related diseases while taking a closer look at their roles and functions in maintaining genomic stability and their influence on telomerase and telomere function.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2521-2521
Author(s):  
Kanagaraju Ponnusamy ◽  
Maria-Myrsini Tzioni ◽  
Murshida Begum ◽  
Mark E Robinson ◽  
Valentina S Caputo ◽  
...  

ZBP1 is an inducible nucleic acid (NA) sensor that is activated when pathogen NA bind to its Zα and Zβ domains. ZBP1 is required for TBK1-dependent phosphorylation of the transcription factor IRF3 (pIRF3) followed by its direct activation of type I interferon genes. However, the role, if any, of ZBP1 in tumour biology is not known. By searching for genes selectively expressed in multiple myeloma (MM) we identified ZBP1 mRNA expressed in 29 MM cell lines (MMCL) but not in >1000 other cancer cell lines (CCLE dataset); ZBP1 was expressed in all 766 patient myeloma PC (CoMMpass dataset) but not in normal blood cells (Blueprint) or 53 healthy tissues (GTex). We confirmed expression of ZBP1 mRNA and/or protein in MMCL, primary human and murine germinal centre B (GCB) and plasma cells (PC) as well as in myeloma PC. By inducing T cell-dependent humoral immune responses after ip alum-NP-KLH immunisation, we explored the role of selective and constitutive expression of Zbp1 in GCB to PC transition. We found no differences in the frequency of splenic GCB cells and PC between control WT and Zbp1-/- mice and in GCB cell frequency between immunised WT and Zbp1-/- mice. However, compared to WT, the increase in PC frequency in immunised Zbp1-/- mice was 50% lower (n=10/group, p<0.0001) commensurate with a 40% (n=6/group, p<0.01), lower increase in NP-KLH-specific IgG but not IgM levels in Zbp1-/- mice. These findings suggest that although Zbp1 is not required for GCB cell and PC development it is required for optimal, T cell-dependent humoral immune responses. To explore the function of ZBP1 in MM we depleted by 2 lentiviral shRNAs either isoform 1 (contains both Zα and Zβ domains; shRNA1) or both isoform 1 and isoform 2 (latter lacks Zα domain; shRNA2). Both shRNAs were toxic to all 5 MMCL tested suggesting that isoform 1 but not isoform 2 is essential for myeloma cell survival. This effect was specific because survival of K562 cells, which lack expression of ZBP1, was not affected by either shRNA and exogenous ZBP1 cDNA rescued cell death of ZBP1-depleted myeloma cells. Dox-induced ZBP1 depletion was toxic to MMCL in vitro and significantly inhibited myeloma cell growth in a subcutaneous NSG model of the MMCL H929 and MM.1S. Together, these findings reveal a novel myeloma cell-specific ZBP1 dependency. Transcriptome analysis of ZBP1-depleted H929 and MM.1S cells showed amongst the significantly downregulated genes enrichment for the cell cycle control and DNA repair pathways consistent with a critical role of ZBP1 in promoting myeloma cell proliferation. Flow-cytometric analysis of ZBP1-depleted MMCL as well as of patient-derived myeloma PC revealed cell cycle arrest at the G0/1 phase and increasing apoptosis. Exploring potential links with IRF3, we first observed that unlike in non-malignant cells, IRF3 was constitutively phosphorylated in MMCL. Using protein-co-immunoprecipitation we found that endogenous ZBP1 interacts with IRF3 and TBK1 while upon co-transfection with different ZBP1 deletion mutants, ZBP1-IRF3 interaction required primarily the ZBP1, RHIM domain-containing, C-terminus. Further, while in ZBP1-depleted myeloma cells total IRF3 and TBK1 levels were not altered, pIRF3 and pTBK1 levels decreased thus showing a post-translational dependency of constitutive pIRF3 and pTBK1 on ZBP1. Finally, pharmacological inhibition of TBK1 resulted in decrease of pIRF3 without affecting total IRF3. Importantly, shRNA-mediated IRF3 depletion resulted in cell cycle arrest and death of MMCL. By integrating histone mark and in-house IRF3 ChiP-seq with transcriptome of IRF3-depleted MM.1S cells we identified 770 down- and 330 up-regulated genes predicted to be directly regulated by IRF3. Pathway enrichment analysis confirmed cell cycle as the most highly regulated by IRF3. Notably, we observed no direct or indirect regulation of the interferon genes (e.g., IFNA1, IFNB1) by IRF3. As well as the IRF3 motif, IRF3 cistrome analysis revealed significant enrichment for the distinct IRF4 motif. Integration of the IRF3/IRF4 cistromes identified >80% IRF3 binding regions are co-occupied by IRF4 and co-regulation of cell cycle genes. Further we validated IRF3-IRF4 interaction at the IRF4 super-enhancer by ChIP-re-ChIP. These data show a novel dependency in MM comprising constitutive activation of the ZBP1-IRF3 pathway and regulation of cell cycle and proliferation by IRF3 thus providing opportunities for therapeutic targeting. Disclosures Caputo: GSK: Research Funding. Auner:Amgen: Other: Consultancy and Research Funding; Takeda: Consultancy; Karyopharm: Consultancy. Karadimitris:GSK: Research Funding.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 76-76 ◽  
Author(s):  
Kuanyin Karen Lin ◽  
Lara Rossi ◽  
Margaret A. Goodell

Abstract Hematopoietic stem cells (HSCs) comprise only ~0.02% of the whole bone marrow cells but possess the capacity to extensively proliferate in order to restore hematopoietic homeostasis. Under homeostasis, HSCs are relatively quiescent with a slow cell cycle progression rate. However, upon stimulation, HSCs are able to promptly proliferate and undergo self-renewal to regenerate HSCs as daughter cells. While regulatory mechanisms involved in cell cycle progression are well characterized to be essential for HSC self-renewal, the mechanisms that facilitate the return of proliferating HSC to their quiescent state have been largely overlooked. The expression of CD81 (also called TAPA-1), a transmembrane protein that belongs to the Tetraspanin family, has been found associated with HSC proliferation. While CD81 is normally absent on HSC, it becomes markedly upregulated during HSC proliferation (Figure 1). To understand the function of CD81 in regenerating HSCs, we utilized a murine stem cell retroviral vector to deliver genes into 5-FU treated bone marrow progenitors to test the effect of enforced CD81 overexpression on HSC. The CD81-transduced proliferating progenitors were found to give rise to an increased number of phenotypically-defined HSC (SP-KLS) without significantly affecting the homeostasis in peripheral organs. In addition, we also characterized the HSCs from CD81 knock-out mice. We discovered that CD81-null HSC failed to engraft in peripheral blood of secondary recipients in serial transplantation assays (Figure 2), suggesting a role of CD81 in preserving a functional HSC compartment during proliferation-induced stress. When investigating further, we discovered that CD81 is a cell cycle suppressor for HSC, as the CD81KO HSCs are delayed in returning quiescence. In addition, clustering of CD81 on the HSC cell membrane using a monoclonal antibody rapidly induced a quiescent phenotype. This was found to be associated with an altered phosphorylation level of AKT, an inhibitor of the transcription factor FOXO1a and FOXO3a, which have been reported to be essential for HSC self-renewal through suppressing HSC proliferation. Taken together, these results demonstrate an essential role of CD81 in HSC self-renewal, and a novel mechanism that advances quiescence from a proliferating state. Figure 1. CD81 expression is upregulated at the time when HSCs (SPKLS) are proliferating in response to 5FU stimulation, a chemotheraputic agent that induces HSC to proliferate. The expression of CD81 is found at a background level in quiescent stages (5FU-Day0 and 5FU-Day11), and is upregulated during proliferation stages (starting 5FU-Day2) Figure 1. CD81 expression is upregulated at the time when HSCs (SPKLS) are proliferating in response to 5FU stimulation, a chemotheraputic agent that induces HSC to proliferate. The expression of CD81 is found at a background level in quiescent stages (5FU-Day0 and 5FU-Day11), and is upregulated during proliferation stages (starting 5FU-Day2) Figure 2. CD8KO HSCs fail to engraft in the secondary competitive transplantation assay, indicating a self-renewal defect. In this assay, 300 donor-derived HSCs (CD45.2 SPKLS) were purified from the primary recipients and transplanted along with 2×105 competitors into lethally irradiated mice (**p<0.01). Figure 2. CD8KO HSCs fail to engraft in the secondary competitive transplantation assay, indicating a self-renewal defect. In this assay, 300 donor-derived HSCs (CD45.2 SPKLS) were purified from the primary recipients and transplanted along with 2×105 competitors into lethally irradiated mice (**p<0.01).


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1175-1175
Author(s):  
Stefanie Kreutmair ◽  
Anna Lena Illert ◽  
Rouzanna Istvanffy ◽  
Christina Eckl ◽  
Christian Peschel ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are characterized by their ability to self-renewal and multilineage differentiation. Since mostly HSCs exist in a quiescent state re-entry into cell cycle is essential for their regeneration and differentiation. We previously characterized NIPA (Nuclear Interaction Partner of ALK) as a F-Box protein that defines an oscillating ubiquitin E3 ligase and contributes to the timing of mitotic entry. To examine the function of NIPA in vivo, we generated Nipa deficient animals, which are viable but sterile due to a defect in testis stem cell maintenance. To further characterize the role of NIPA in stem cell maintenance and self-renewal we investigated hematopoiesis in Nipa deficient animals. FACS analyses of spleen cells and bone marrow (BM) showed differences in Leucocyte subpopulations. Measuring the CD4 and CD8 positivity within all Thy1.2+ cells, the balance in NIPA-/- T-lymphocytes is destabilised in favour of CD4 positive cells. Besides CD43/CD19 positive as well as CD43/B220 positive cells within all leukocytes are increased in NIPA deficient spleen cells. Analysing more primitive cells, FACS data of bone marrow showed significantly decreased numbers of Lin-Sca1+cKit+ (LSK) cells in NIPA-/- mice (age > 20 month), where LSKs were reduced to 40% of wildtype (wt) littermates (p=0,0171). Additionally, in such older NIPA-/- mice, only half the number of multipotent myeloid progenitors were detected in comparison to wt mice. To examine efficient response of stem cells to myeloid depression, mice were treated with 5-FU four days before BM harvest. We found that in NIPA-/- mice, both the number of myeloid progenitors as well as the number of LSKs were severely reduced compared to those in wt levels after 5-FU treatment (p<0.001). Interestingly, the reduction of progenitors and LSK cells was not dependent on age of the NIPA ko mice, suggesting a role for NIPA in stem cell activation or regeneration. This statement was studied in vitro by methylcellulose assays with 10 000 BM cells seeded in methylcellulose with cytokines and replated for three times after 10 days. Nipa deficient hematopoietic progenitors showed a reduced ability to proliferate and differentiate into colonies compared to their controls with an increasing difference after each replating (p(third replating) < 0.0001). Dynamic cell cycle analysis of seeded BM cells with BRDU and PI uncovered delayed cell cycle progress and mitotic entry in NIPA-/- BM cells in contrast to wt BM cells. Using competitive BM transplantation assay we investigated the role of NIPA for hematopoietic reconstitution in vivo. These experiments showed that NIPA-/- BM cells were severely deficient in hematopoietic recovery as recipient mice of NIPA-/- BM cells showed only half the amount of donor-derived peripheral blood cells in contrast to recipient mice of wt BM cells after 4, 11, 17 and over 23 weeks after transplantation. Furthermore NIPA-/- cells contributed only 7% in BM of transplanted mice 6 month after transplantation compared to 33% in recipients transplanted with wt BM cells (p<0.005). To further explore this defect in hematopoietic repopulation capacity and apply to more primitive progenitors serial transplantation assays were conducted with LSK cells transplanted together with support BM cells. Taken together our results demonstrate a critical role of NIPA in regulating the primitive hematopoietic compartment as a regulator of self-renewal, cycle capacity and HSC expansion. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Marina Nunes ◽  
Anelise Diniz Arantes ◽  
Renato Borges Tesser ◽  
Priscila Henriques da Silva ◽  
Leticia Rocha da Silva ◽  
...  

AbstractGerm cells emerge from the epiblast and migrate to the gonads, where they become gonocytes. The gonocytes are the precursors of the spermatogonial stem cells, but little is known about their differentiation. The rigid control of gonocyte proliferation, quiescence and pluripotency marker expression is crucial for spermatogonia development. We have previously suggested that cleaved caspase-3 (Casp3) might play a non-apoptotic role in gonocyte quiescence. Here we describe when rat fetal gonocyte enter mitotic arrest and show that Casp3 inhibition in these cells affects the expression of cell cycle genes. The expression of Ki67, p27Kip, Retinoblastoma 1 (pRb1), NANOG and CASP3 was investigated in 15, 17 and 19 days post coitum rat embryo gonads. The results show that Ki67 and pRB1 proteins are downregulated from 15 days post coitum to 19 days post coitum, whereas p27Kip, NANOG and CASP3 are upregulated. This suggests that rat germ cells start to enter quiescence around 15dpc and that CASP3 and NANOG seem to play a role in this process. CASP3 labelling formed a ring in gonocyte cytoplasm, which is clearly distinct from apoptotic cell labelling, and coincided with NANOG labelling. CASP3 inhibition lead to an increase of Pcna expression and to a decrease of p27kip and p21cip expression. These results suggest that cleaved CASP3 has a role in rat male germ cell development which can be related to the control of the cell cycle genes.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1343-1343
Author(s):  
Oscar Quintana-Bustamante ◽  
S. Lan-Lan Smith ◽  
Jude Fitzgibbon ◽  
Dominique Bonnet

Abstract Acute Myeloid Leukemia (AML) is characterized by an abnormal hematopoietic differentiation and uncontrolled cell proliferation. Mutations in several transcription factors (TFs) have been implicated in the development of leukemia. One of these TFs is CCAAT/enhancer-binding protein-α (C/EBPα). In normal hematopoiesis, C/EBPα plays a central role to coordinate myeloid differentiation and growth arrest. C/EBPα is mutated in approximately 9% of AML; these mutations take place either in C or N terminal domains of the protein, although there are several familial cases of AML where both types of mutations have been found. We use C and/or N terminal C/EBPα mutations from one case of sporadic AML to investigate the role of each mutation in leukemic transformation (Smith et al., 2004, N Engl J Med 351, 2403–2407). Human lineage negative (Lin-) umbilical cord blood were transduced with lentiviral vectors carrying the wild type C/EBPα (WT), N terminal mutated C/EBPα (N-ter) or N and C terminal mutated (NC-ter) C/EBPα cloned from this sporadic case of AML. We observed differences in proliferation of transduced Lin- in vitro: WT C/EBPα expression resulted in G0 cell cycle arrest causing a progressive extinction of the transduced cells overtime; N-ter cells showed a higher proliferative advantage over untransduced cells. The NC-ter CEBPα cells like untransduced cells kept their levels throughout culture. Furthermore, when induced into myeloid differentiation in vitro, WT C/EBPα cells were mainly inducing fully mature granulocytes whereas N-ter C/EBPα was not able to induce terminal granulocytic differentiation; in contrast NC-ter C/EBPα did not increase myeloid differentiation. Additionally, their ability to form Colony Forming Units (CFUs) in primary, secondary and tertiary replating was also tested: WT transduced cells gave rise to few primary CFUs; contrary, N and NC-ter could generate both primary and secondary CFUs, but only NC-ter cells were able to produce CFUs in tertiary replating, indicating its ability to maintain undifferentiated hematopoietic progenitors in vitro. These results were confirmed using Long-Term Culture Initiating Cells (LTC-IC) where the NC-ter mutated cells showed the highest LTC-IC after 5 weeks. Finally, in vivo transplantation in NOD/SCID/β2mnull indicated that NC-ter mutated cells engraft better than WT and N-ter 8 week post- transplant. Serial transplantation experiments are underway to evaluate their self-renewal capacity. Our results confirmed some known functions of WT C/EBPα in human hematopoiesis, such as inducing myeloid differentiation and cell cycle arrest. On the other hand, we showed new functions for the C/EBPα mutants. The N-ter C/EBPα mutation caused an increase in cell proliferation and blockage of terminal granulocytic differentiation, whereas the NC-ter C/EBPα mutation increased the self-renewal capacity of progenitor/stem cells without having an influence on myeloid differentiation. This work provides further insight into the mechanisms by which different C/EBPα mutations induce AML.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
Y S Tseng ◽  
M Y You ◽  
Y C Hsu ◽  
K C Yang

Abstract Background Although the adult mammalian heart fails to regenerate after injury, it is known that newborn mice within a week have full cardiac regenerative capacity. The molecular determinants underlying the disparate regenerative capacity between neonatal and adult mice, however, remain incompletely understood. Exploiting RNA sequencing in isolated cardiomyocytes from neonatal and adult mouse heart, we identified Cdh2, which encodes the adherence junction protein N-cadherin, as a potential novel mediator of cardiac regeneration. Cdh2 expression levels were much higher in neonatal, compared with adult, cardiomyocytes and showed a strong positive correlation with that of multiple cell cycle genes. N-cadherin has been reported to be essential for embryonic cardiac development; its role in cardiac regeneration, however, remains unknown. Purpose To determine the role of Cdh2 (N-cadherin) in cardiac regeneration and to investigate the underlying molecular mechanisms. Methods Apical resection in postnatal day 1 mice was used as a cardiac regenerative model. The in vitro gain/loss-of function studies of Cdh2/N-cadherin was performed in postnatal day 1 neonatal mouse cardiomyocytes (P1CM) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM). N-cadherin inhibitor exherin was used to study the effects of N-cadherin in vivo. Results Comparing to sham-operated control, Cdh2 was significantly upregulated in mouse cardiac apex and border zone following apical resection, which was accompanied with increased cardiomyocyte proliferation activity. In vitro, knocking down Cdh2 or inhibition of N-cadherin activity with exherin in P1CM significantly reduced the proliferative activity of cardiomyocytes, whereas overexpression of Cdh2 markedly increased the proliferation of P1CM. In addition, forced expression of Cdh2 resulted in significant upregulation of multiple cell cycle genes, including Ccnd1 (Cyclin D1) and Pcna (proliferating cell nuclear antigen), in P1CM. In vivo inhibition of N-cadherin in P1 neonatal mice with exherin following apical resection impaired cardiac regeneration and increased scar formation (Figure). Knocking down CDH2 in human iPSC-CMs significantly reduced the proliferative activity and the expression levels of cell cycle gene CCND1 in iPSC-CMs. Mechanistically, we demonstrated that the pro-mitotic effects of N-cadherin in cardiomyocytes were mediated, at least partially, by stabilizing β-catenin, a pro-mitotic transcription factor, through direct interaction with its cytoplasmic domain and/or inactivation of GSK3β, a critical component of β-catenin destruction complex. N-Cad blocker impairs heart regeneration Conclusion Our study uncovered a previously unrecognized role of Cdh2 (N-cadherin) in cardiomyocyte proliferation and cardiac regeneration. Enhancing cardiac expression or activity of N-cadherin, therefore, could be a potential novel therapeutic approach to promote cardiac regeneration and restore cardiac function in adult heart following injury.


Sign in / Sign up

Export Citation Format

Share Document