Further Evidence that the Human Differentiation Antigen p24 Possesses Activity Associated with Protein Kinase

1986 ◽  
pp. 203-211 ◽  
Author(s):  
Theodore F. Zipf ◽  
Gamil R. Antoun ◽  
Gilles J. Lauzon ◽  
B. Michael Longenecker
2010 ◽  
Vol 108 (1) ◽  
pp. 302-307 ◽  
Author(s):  
Sachie Hiratsuka ◽  
Dan G. Duda ◽  
Yuhui Huang ◽  
Shom Goel ◽  
Tatsuki Sugiyama ◽  
...  

Increasing evidence suggests that myeloid bone marrow-derived cells (BMDCs) play a critical role in lung metastasis. Blockade of VEGF receptor 1 (VEGFR1) has been proposed as a potential strategy to limit myeloid BMDC recruitment to tumors. However, preclinical evidence indicates that this strategy may not be effective in all tumors. Thus, establishing which molecular mechanisms are responsible for the “escape” of these BMDCs from VEGFR1 inhibition would facilitate development of strategies to control metastasis. Here, we report the complementary role of the chemokine (C-X-C motif) ligand 12/C-X-C chemokine receptor 4 (CXCR4) and VEGF/VEGFR1 pathways in promoting lung metastasis in mice via BMDC recruitment using chimeric mice with deficiency in CXCR4 and VEGFR1–tyrosine kinase in the BMDCs. We first demonstrate that CXCR4 activity is essential for recruitment of myeloid differentiation antigen (Gr-1)-positive BMDCs, whereas VEGFR1 activity is responsible for macrophage recruitment in established tumors. Inhibition of both VEGFR1 and CXCR4 signaling in myeloid BMDCs exerted greater effects on tumor vascular density, growth, and lung metastasis than inhibition of VEGFR1 alone. These effects were reproduced after pharmacologic inhibition of CXCR4 with AMD3100. VEGFR1 and CXCR4 independently exerted a promigratory effect in myeloid BMDCs by activating p38 mitogen-activating protein kinase. Thus, combining CXCR4 blockade with inhibition of VEGFR1 may induce greater tumor growth delay and prevent or inhibit metastasis.


2001 ◽  
Vol 353 (3) ◽  
pp. 735
Author(s):  
K. PEYROLLIER ◽  
E. HAJDUCH ◽  
A. GRAY ◽  
G. J. LITHERLAND ◽  
A. R. PRESCOTT ◽  
...  

2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


2000 ◽  
Vol 24 (6) ◽  
pp. 785-796 ◽  
Author(s):  
Keithanne Mockaitis ◽  
Stephen H. Howell

2001 ◽  
Vol 268 (6) ◽  
pp. 1518-1527 ◽  
Author(s):  
Ricardo B. Maccioni ◽  
Carola Otth ◽  
Ilona I. Concha ◽  
Juan P. Munoz

2001 ◽  
Vol 120 (5) ◽  
pp. A528-A528
Author(s):  
S SAKSENA ◽  
R GILL ◽  
S TYAGI ◽  
I SYED ◽  
A CHINNAKOTLA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document