Oscillation Theory on a Non-Compact Interval

Author(s):  
William T. Reid
1977 ◽  
Vol 123 (12) ◽  
pp. 657 ◽  
Author(s):  
D.E. Vakman ◽  
L.A. Vainshtein
Keyword(s):  

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shyam Sundar Santra ◽  
Apurba Ghosh ◽  
Omar Bazighifan ◽  
Khaled Mohamed Khedher ◽  
Taher A. Nofal

AbstractIn this work, we present new necessary and sufficient conditions for the oscillation of a class of second-order neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.


Author(s):  
Ian Doust ◽  
Qiu Bozhou

AbstractWell-bounded operators are those which possess a bounded functional calculus for the absolutely continuous functions on some compact interval. Depending on the weak compactness of this functional calculus, one obtains one of two types of spectral theorem for these operators. A method is given which enables one to obtain both spectral theorems by simply changing the topology used. Even for the case of well-bounded operators of type (B), the proof given is more elementary than that previously in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Caifeng Du

AbstractIn this paper, we consider a nonautonomous predator–prey model with Holling type II schemes and a prey refuge. By applying the comparison theorem of differential equations and constructing a suitable Lyapunov function, sufficient conditions that guarantee the permanence and global stability of the system are obtained. By applying the oscillation theory and the comparison theorem of differential equations, a set of sufficient conditions that guarantee the extinction of the predator of the system is obtained.


1984 ◽  
Author(s):  
J. DEUR ◽  
R. HESSLER

2017 ◽  
Vol 311 ◽  
pp. 569-597 ◽  
Author(s):  
Fritz Gesztesy ◽  
Maxim Zinchenko

Sign in / Sign up

Export Citation Format

Share Document