2012 ◽  
Vol 152-154 ◽  
pp. 1010-1017
Author(s):  
Si Jun Zhao ◽  
Jia Yua Shan ◽  
Lu Yan Bi

This paper presents research and simulation analysis on kinematics and dynamics problem based on the 6-axis serial robot. By means of Denavit-Hartenberg method, the robot kinematics model is established as well as and the derivation process of kinematic and inverse kinematic resolution is described in detail. Furthermore, in software simulationX, robot system model including mechanical sub-system and control sub-system are founded. Additionally, through simulation, different performances of robot are illustrated based on different trajectory planning and control. In this way a theoretical reference is provided for the further study on trajectory planning and controls of 6-axis serial robot.


Author(s):  
Robert L. Williams

This paper details some innovations developed at Ohio University for augmenting the teaching and learning of mechanism kinematics and dynamics, robot kinematics, dynamics, and control, and the musculoskeletal biomechanics of human motion. Common to all three courses are NotesBooks, significant MATLAB use in class, homework, and projects, term projects simulated from real-world applications, and Internet resources developed and hosted by the author at Ohio University.


Robotica ◽  
2007 ◽  
Vol 25 (6) ◽  
pp. 641-659 ◽  
Author(s):  
P. S. Donelan

SUMMARYThe significance of singularities in the design and control of robot manipulators is well known, and there is an extensive literature on the determination and analysis of singularities for a wide variety of serial and parallel manipulators—indeed such an analysis is an essential part of manipulator design. Singularity theory provides methodologies for a deeper analysis with the aim of classifying singularities, providing local models and local and global invariants. This paper surveys applications of singularity-theoretic methods in robot kinematics and presents some new results.


Robotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 45 ◽  
Author(s):  
Roberto Bussola ◽  
Giovanni Legnani ◽  
Massimo Callegari ◽  
Giacomo Palmieri ◽  
Matteo-Claudio Palpacelli

The present paper analyses the potential dynamic performance of a novel redundant SCARA robot, currently at the stage of a functional design proposed by a renowned robot manufacturer. The static and dynamic manipulability of the new concept is compared with the conventional model of the same manufacturer by means of computer simulation in typical pick and place tasks arising from industry. The introduction of a further revolute joint in the SCARA robot kinematics leads to some improvements in the kinematic and dynamic behaviour at the expense of a greater complexity. In this paper, the potential of a redundant SCARA architecture in cutting cycle-times is investigated for the first time in performing several tasks. It is shown that, in order to exploit the possible enhancements of the redundant structure, the whole manipulator, mechanics and control must be redesigned according to specific tasks aiming at the optimization of their cycle-time.


1999 ◽  
Vol 11 (4) ◽  
pp. 237-237
Author(s):  
Toshiro Noritsugu ◽  

Mechatronics is one of the most powerful technologies to overcome various industrial and social problems arising in the 21st century, for example, realization of the recycle manufacturing system, global consideration on the environment, development of human-oriented technology. The 3rd International Conference on Advanced Mechatronics (ICAM’98)-Innovative Mechatronics for the 21st Century hass been held in Okayama August 3-6, 1998, following the 1st and 2nd held in Tokyo in 1988 and 1993, sponsored by the Japan Society of Mechanical Engineers. The purpose of the conference is to promote the creation of new technologies and industries such as advanced robotics and human-oriented technology for the coming 21st century. Two plenary talks and 35 technical sessions including 11 specially organized sessions were opened. In technical sessions, a total of 149 papers was presented, of which 61 papers were in organized sessions and 88 papers in general sessions. Some 47 papers came from 17 countries abroad and 102 papers from Japan. A number of registered participants excluding invited guests was 40 from other countries and 163 from Japan. After the technical program, the Advanced Robotics and Mechatronics symposium was held for tutorial reviews of future robotics and mechatronics, mainly focusing on ""human collaboration"" technology. More than 100 persons attended the symposium. Organized sessions included Analysis and Control of Robot Manipulators, Modeling and Control of Nonholonomic Underactuated Systems, Human Perspective Characteristics and Virtual Reality, Robotic Hand Design Grasping and Dexterous Manipulation, Healthcare Robotics, Advanced Fluid Power Control Technology, Advanced Robot Kinematics, Human Directed Robotics, Computer Support for Mechatronics System Design, Robotic Control, and Motion Control of Special Motors. Robotics was a main subject, but fluid power technology, fundamental motion control technology, and so on were also discussed. “Human collaboration” technology dealing with interaction between humans and robots attracted great attention from many participants. General sessions included Manufacturing, Vision, Micro Machine, Electric Actuator, Human-Robot Interface, Processing Technology, Fluid Actuator, Legged Locomotion, Control Strategy, Soft-Computing, Vehicle, Automation for Agriculture, Robot Force Control, Vibration, and Robot Application. Many studies have been presented over comprehensive subjects. This special issue has been organized by editing the papers presented at ICAM’98 for widely distributing the significant results of the conference. I would like to thank the authors in this special issue who have contributed their updated papers. Also, I would like to thank to Prof. Makoto Kaneko (Hiroshima University), whose work has been indispensable in organizing this special issue.


Sign in / Sign up

Export Citation Format

Share Document