Simple Groups of 2-Rank ≤ 2

Author(s):  
Daniel Gorenstein
Keyword(s):  
2002 ◽  
Vol 20 (1) ◽  
pp. 34 ◽  
Author(s):  
V. A. Ustimenko ◽  
Y. M. Khmelevsky

New results on graph theoretical method of encryption will be presented. The general idea is to treat vertices of a graph as messages, and walks of a certain length as ecnryption tools. We will construct one-time pad algorithms with a certain resistance to attacks when the adversary knows plaintext and ciphertext. Special linguistic graphs of high girth whose vertices (messages) and walks (encoding tools) could be both naturally identified with vectors over the finite field, and with the so-called parallelotopic graphs, which turn out to be efficient tools for symmetric encryption. We will formulate criteria when parallelotopic graph (or the more general graph of tactical configuration) is a graph of absolutely optimal encryption scheme, producing asymptotic one-time pad algorithm. We will show how to convert one-time pads, which are related to geometries of rank 2 of simple groups of Lie type, to a real-life encryption scheme involving potentially infinite text and flexible passwords. We will discuss families of linguistic and parallelotopic graphs of increasing girth as the source for the generation of asymmetric cryptographic functions and related open key algorithms. We will construct new families of such graphs via group theoretical and geometrical technique. The software for symmetric and asymmetric ecnryption (prototype model of the package) is ready for demonstration.


1984 ◽  
Vol 49 (4) ◽  
pp. 1171-1184 ◽  
Author(s):  
James Loveys

The Classification Theorem for ℵ0-categorical strictly minimal sets says that if H is strictly minimal and ℵ0-categorical, either H has in effect no structure at all or is essentially an affine or projective space over a finite field. Zil′ber, in [Z2], showed that if H were a counterexample to this Classification Theorem it would interpret a rank 2, degree 1 pseudoplane. Cherlin later noticed (see [CHL, Appendices 2 and 3], for the proof) that the Classification Theorem is a consequence of the Classification Theorem for finite simple groups. In [Z4] and [Z5], Zil′ber found a quite different proof of the Classification Theorem using no deep group theory.Meanwhile in [Z3], Zil′ber introduced the notion of envelope in an attempt to prove that no complete totally categorical theory T can be finitely axiomatizable. The idea of the proof was to show that if M is a model of such a T and H ⊆ M is strongly minimal, then an envelope of any sufficiently large finite subset of H is a finite model of any fixed finite subset of T. [Z3] contains an error, which Zil′ber has since corrected (in a nontrivial way).In [CHL], Cherlin, Harrington and Lachlan used the Classification Theorem to expand and reorganize Zil′ber's work. In particular, they generalized most of his work to ℵ0-categorical, ℵ0-stable structures, proved the Morley rank is finite in these structures, and introduced the powerful Coordinatization Theorem (Theorem 3.1 of [CHL]; Proposition 1.14 of the present paper). They also showed that ℵ0-categorical, ℵ0-stable structures are not finitely axiomatizable using a notion of envelope that is the same as Zil′ber's except in one particularly perverse case; [CHL]'s notion of envelope is used throughout the current paper. Peretyat'kin [P] has found an example of an ℵ1-categorical finitely axiomatizable structure.


2020 ◽  
Vol 54 (2 (252)) ◽  
pp. 81-86
Author(s):  
V.S. Atabekyan

In this paper we prove that the set of non-isomorphic 2-generated $C^*$-simple relatively free groups has the cardinality of the continuum. A non-trivial identity is satisfied in any (not absolutely free) relatively free group. Hence, they cannot contain a non-abelian absolutely free subgroups. The question of the existence of $C^*$-simple groups without free subgroups of rank 2 was posed by de la Harpe in 2007.


2013 ◽  
Vol 154 (3) ◽  
pp. 527-547 ◽  
Author(s):  
ULRICH MEIERFRANKENFELD ◽  
GERNOT STROTH ◽  
RICHARD M. WEISS

AbstractWe give a short proof of the uniqueness of finite spherical buildings of rank at least 3 in terms of the structure of the rank 2 residues and use this result to prove a result making it possible to identify an arbitrary finite group of Lie type from knowledge of its “parabolic structure” alone. Our proof also involves a connection between loops, “Latin chamber systems” and buildings.


2016 ◽  
Vol 11 (2) ◽  
pp. 205-209
Author(s):  
D.T. Siraeva

Invariant submodel of rank 2 on the subalgebra consisting of the sum of transfers for hydrodynamic equations with the equation of state in the form of pressure as the sum of density and entropy functions, is presented. In terms of the Lagrangian coordinates from condition of nonhyperbolic submodel solutions depending on the four essential constants are obtained. For simplicity, we consider the solution depending on two constants. The trajectory of particles motion, the motion of parallelepiped of the same particles are studied using the Maple.


2020 ◽  
Vol 23 (4) ◽  
pp. 641-658
Author(s):  
Gunnar Traustason ◽  
James Williams

AbstractIn this paper, we continue the study of powerfully nilpotent groups. These are powerful p-groups possessing a central series of a special kind. To each such group, one can attach a powerful nilpotency class that leads naturally to the notion of a powerful coclass and classification in terms of an ancestry tree. In this paper, we will give a full classification of powerfully nilpotent groups of rank 2. The classification will then be used to arrive at a precise formula for the number of powerfully nilpotent groups of rank 2 and order {p^{n}}. We will also give a detailed analysis of the ancestry tree for these groups. The second part of the paper is then devoted to a full classification of powerfully nilpotent groups of order up to {p^{6}}.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


2017 ◽  
Vol 95 (2) ◽  
pp. 455-474 ◽  
Author(s):  
Arindam Biswas ◽  
Yilong Yang

Sign in / Sign up

Export Citation Format

Share Document