scholarly journals Towards the classification of rank-r $$ \mathcal{N} $$ = 2 SCFTs. Part I. Twisted partition function and central charge formulae

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Philip C. Argyres ◽  
Mario Martone

Abstract We study the stratification of the singular locus of four dimensional $$ \mathcal{N} $$ N = 2 Coulomb branches. We present a set of self-consistency conditions on this stratification which can be used to extend the classification of scale-invariant rank 1 Coulomb branch geometries to two complex dimensions, and beyond. The calculational simplicity of the arguments presented here stems from the fact that the main ingredients needed — the rank 1 deformation patterns and the pattern of inclusions of rank 2 strata — are discrete topological data which satisfy strong self-consistency conditions through their relationship to the central charges of the SCFT. This relationship of the stratification data to the central charges is used here, but is derived and explained in a companion paper [1] by one of the authors. We illustrate the use of these conditions by re-analyzing many previously-known examples of rank 2 SCFTs, and also by finding examples of new theories. The power of these conditions stems from the fact that for Coulomb branch stratifications a conjecturally complete list of physically allowed “elementary slices” is known. By contrast, constraining the possible elementary slices of symplectic singularities relevant for Higgs branch stratifications remains an open problem.


2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Philip Argyres ◽  
Antoine Bourget ◽  
Mario Martone

We classify orbifold geometries which can be interpreted as moduli spaces of four-dimensional \mathcal{N}\geq 3𝒩≥3 superconformal field theories up to rank 2 (complex dimension 6). The large majority of the geometries we find correspond to moduli spaces of known theories or discretely gauged version of them. Remarkably, we find 6 geometries which are not realized by any known theory, of which 3 have an \mathcal{N}=2𝒩=2 Coulomb branch slice with a non-freely generated coordinate ring, suggesting the existence of new, exotic \mathcal{N}=3𝒩=3 theories.


2003 ◽  
Vol 18 (07) ◽  
pp. 503-513 ◽  
Author(s):  
SAYIPJAMAL DULAT

We consider N = 2 superconformal field theories on a two-dimensional torus with central charge c = 3. In particular, we present the partition function for this theory. Furthermore, to generate new theories, we recall general orbifold prescription. Finally, we construct the modular invariant ℤ3 orbifold-prime model.


2020 ◽  
Vol 23 (4) ◽  
pp. 641-658
Author(s):  
Gunnar Traustason ◽  
James Williams

AbstractIn this paper, we continue the study of powerfully nilpotent groups. These are powerful p-groups possessing a central series of a special kind. To each such group, one can attach a powerful nilpotency class that leads naturally to the notion of a powerful coclass and classification in terms of an ancestry tree. In this paper, we will give a full classification of powerfully nilpotent groups of rank 2. The classification will then be used to arrive at a precise formula for the number of powerfully nilpotent groups of rank 2 and order {p^{n}}. We will also give a detailed analysis of the ancestry tree for these groups. The second part of the paper is then devoted to a full classification of powerfully nilpotent groups of order up to {p^{6}}.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Nathan Haouzi ◽  
Can Kozçaz

Abstract Starting from type IIB string theory on an ADE singularity, the (2, 0) little string arises when one takes the string coupling gs to 0. In this setup, we give a unified description of the codimension-two defects of the little string, labeled by a simple Lie algebra $$ \mathfrak{g} $$ g . Geometrically, these are D5 branes wrapping 2-cycles of the singularity, subject to a certain folding operation when the algebra is non simply-laced. Equivalently, the defects are specified by a certain set of weights of $$ {}^L\mathfrak{g} $$ L g , the Langlands dual of $$ \mathfrak{g} $$ g . As a first application, we show that the instanton partition function of the $$ \mathfrak{g} $$ g -type quiver gauge theory on the defect is equal to a 3-point conformal block of the $$ \mathfrak{g} $$ g -type deformed Toda theory in the Coulomb gas formalism. As a second application, we argue that in the (2, 0) CFT limit, the Coulomb branch of the defects flows to a nilpotent orbit of $$ \mathfrak{g} $$ g .


2019 ◽  
Vol 372 (9) ◽  
pp. 6629-6653
Author(s):  
Akihiro Kanemitsu
Keyword(s):  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract 5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in [1], which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Andreas P. Braun ◽  
Jin Chen ◽  
Babak Haghighat ◽  
Marcus Sperling ◽  
Shuhang Yang

Abstract We study circle compactifications of 6d superconformal field theories giving rise to 5d rank 1 and rank 2 Kaluza-Klein theories. We realise the resulting theories as M-theory compactifications on local Calabi-Yau 3-folds and match the prepotentials from geometry and field theory. One novelty in our approach is that we include explicit dependence on bare gauge couplings and mass parameters in the description which in turn leads to an accurate parametrisation of the prepotential including all parameters of the field theory. We find that the resulting geometries admit “fibre-base” duality which relates their six-dimensional origin with the purely five-dimensional quantum field theory interpretation. The fibre-base duality is realised simply by swapping base and fibre curves of compact surfaces in the local Calabi-Yau which can be viewed as the total space of the anti-canonical bundle over such surfaces. Our results show that such swappings precisely occur for surfaces with a zero self-intersection of the base curve and result in an exchange of the 6d and 5d pictures.


2013 ◽  
Vol 28 (03n04) ◽  
pp. 1340006 ◽  
Author(s):  
OSCAR CHACALTANA ◽  
JACQUES DISTLER ◽  
YUJI TACHIKAWA

We study the local properties of a class of codimension-2 defects of the 6d [Formula: see text] theories of type J = A, D, E labeled by nilpotent orbits of a Lie algebra [Formula: see text], where [Formula: see text] is determined by J and the outer-automorphism twist around the defect. This class is a natural generalization of the defects of the six-dimensional (6d) theory of type SU (N) labeled by a Young diagram with N boxes. For any of these defects, we determine its contribution to the dimension of the Higgs branch, to the Coulomb branch operators and their scaling dimensions, to the four-dimensional (4d) central charges a and c and to the flavor central charge k.


Sign in / Sign up

Export Citation Format

Share Document