The Antigenic Structure of Bovine Serum Albumin: T-Cell, B-Cell, And Ia Determinants

Author(s):  
David C. Benjamin ◽  
Lise A. Daigle ◽  
Richard L. Riley
2002 ◽  
Vol 293 (5) ◽  
pp. 1348-1353 ◽  
Author(s):  
Soichi Tanabe ◽  
Yoko Kobayashi ◽  
Yoshihisa Takahata ◽  
Fumiki Morimatsu ◽  
Rumiko Shibata ◽  
...  

1979 ◽  
Vol 149 (6) ◽  
pp. 1336-1348 ◽  
Author(s):  
J Z Weinberger ◽  
M I Greene ◽  
B Benacerraf ◽  
M E Dorf

Hapten-specific delayed-type hypersensitivity (DTH) was induced in several strains of mice. (4-hydroxy-3-nitrophenyl)acetyl-bovine gamma globulin (NP-BGG)-primed mice which did not bear the Ig1b heavy-chain linkage group made a NP-specific DTH response when challenged with NP bovine serum albumin (BSA) and failed to respond to challenge with (4-hydroxy-5-iodo-3-nitrophenyl)acetyl-bovine serum albumin (NIP-BSA). Strains of NP-BGG-primed mice bearing the Ig1b allotype, including SJL, responded to challenges of either NP-BSA or NIP-BSA. F1 hybrids between a cross-reactive strain, C57BL/6, and two other noncross-reactive strains were cross-reactive. Genetic mapping of the NIP-cross-reactive DTH response localized the trait to the VH-region of the Ig1b heavy-chain linkage group. The fine-specificity pattern of the T-cell anti-NP response, and the genetic mapping of this trait, were analogous to the reported fine specificity and mapping data of the humoral heteroclitic anti-NP response. Adoptive transfer studies on the ability to transfer NP-specific DTH between various strain combinations showed that the T-cell donors and the recipient must have homology for at least the I-A subregion. Whenever NP-specific reactivity was transferred from a strain which cross-reactively responded to NIP, the recipient also responded to both NP and NIP. The implications of the control of NP-primed DTH-reactive populations of T cells by two distinct genetic regions, VH and H-2, were discussed.


2004 ◽  
Vol 41 (9) ◽  
pp. 885-890 ◽  
Author(s):  
Soichi Tanabe ◽  
Rumiko Shibata ◽  
Toshihide Nishimura

Author(s):  
G. D. Gagne ◽  
M. F. Miller

We recently described an artificial substrate system which could be used to optimize labeling parameters in EM immunocytochemistry (ICC). The system utilizes blocks of glutaraldehyde polymerized bovine serum albumin (BSA) into which an antigen is incorporated by a soaking procedure. The resulting antigen impregnated blocks can then be fixed and embedded as if they are pieces of tissue and the effects of fixation, embedding and other parameters on the ability of incorporated antigen to be immunocyto-chemically labeled can then be assessed. In developing this system further, we discovered that the BSA substrate can also be dried and then sectioned for immunolabeling with or without prior chemical fixation and without exposing the antigen to embedding reagents. The effects of fixation and embedding protocols can thus be evaluated separately.


1981 ◽  
Vol 46 (03) ◽  
pp. 645-647 ◽  
Author(s):  
M A Orchard ◽  
C Robinson

SummaryThe biological half-life of prostacyclin in Krebs solution, human cell-free plasma or whole blood was measured by bracket assay on ADP-induced platelet aggregation. At 37°C, pH 7.4, plasma and blood reduced the rate of loss of antiaggregatory activity compared with Krebs solution. The protective effect of plasma was greater than that of whole blood. This effect could be partially mimicked by the addition of human or bovine serum albumin to the Krebs solution. The stabilisation afforded by human serum albumin was dependent on the fatty acid content of the albumin, although this was less important for bovine serum albumin.


1974 ◽  
Vol 75 (1) ◽  
pp. 133-140 ◽  
Author(s):  
B. E. Senior

ABSTRACT A radioimmunoassay was developed to measure the levels of oestrone and oestradiol in 0.5–1.0 ml of domestic fowl peripheral plasma. The oestrogens were extracted with diethyl ether, chromatographed on columns of Sephadex LH-20 and assayed with an antiserum prepared against oestradiol-17β-succinyl-bovine serum albumin using a 17 h incubation at 4°C. The specificity, sensitivity, precision and accuracy of the assays were satisfactory. Oestrogen concentrations were determined in the plasma of birds in various reproductive states. In laying hens the ranges of oestrone and oestradiol were 12–190 pg/ml and 29–327 pg/ml respectively. Levels in immature birds, in adult cockerels and in an ovariectomized hen were barely detectable. The mean concentrations of oestrone and oestradiol in the plasma of four non-laying hens (55 pg/ml and 72 pg/ml respectively) and one partially ovariectomized hen (71 pg/ml and 134 pg/ml respectively) were well within the range for laying hens. It is evident that the large, yolk-filled follicles are not the only source of oestrogens in the chicken ovary.


Sign in / Sign up

Export Citation Format

Share Document