Covering Spaces and Simply Connected Groups

Author(s):  
M. A. Naimark ◽  
A. I. Štern
1988 ◽  
Vol 30 (3) ◽  
pp. 331-337 ◽  
Author(s):  
M. A. Armstrong

The Bass–Serre theorem supplies generators and relations for a group of automorphisms of a tree. Recently K. S. Brown [2] has extended the result to produce a presentation for a group of automorphisms of a simply connected complex, the extra ingredient being relations which come from the 2-cells of the complex. Suppose G is the group, K the complex and L the 1-skeleton of K. Then an extension of π1(L) by G acts on the universal covering space of L (which is of course a tree) and Brown's technique is to apply the work of Bass and Serre to this action. Our aim is to give a direct elementary proof of Brown's theorem which makes no use of covering spaces, deals with the Bass–Serre theorem as a special case and clarifies the roles played by the various generators and relations.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2382
Author(s):  
Susmit Bagchi

In general, the braid structures in a topological space can be classified into algebraic forms and geometric forms. This paper investigates the properties of a braid structure involving 2-simplices and a set of directed braid-paths in view of algebraic as well as geometric topology. The 2-simplices are of the cyclically oriented variety embedded within the disjoint topological covering subspaces where the finite braid-paths are twisted as well as directed. It is shown that the generated homotopic simplicial braids form Abelian groups and the twisted braid-paths successfully admit several varieties of twisted discrete path-homotopy equivalence classes, establishing a set of simplicial fibers. Furthermore, a set of discrete-loop fundamental groups are generated in the covering spaces where the appropriate weight assignments generate multiplicative group structures under a variety of homological formal sums. Interestingly, the resulting smallest non-trivial group is not necessarily unique. The proposed variety of homological formal sum exhibits a loop absorption property if the homotopy path-products are non-commutative. It is considered that the topological covering subspaces are simply connected under embeddings with local homeomorphism maintaining generality.


Filomat ◽  
2015 ◽  
Vol 29 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Osman Mucuk ◽  
Serap Demir

A categorical group is a kind of categorization of group and similarly a categorical ring is a categorization of ring. For a topological group X, the fundamental groupoid ?X is a group object in the category of groupoids, which is also called in literature group-groupoid or 2-group. If X is a path connected topological group which has a simply connected cover, then the category of covering groups of X and the category of covering groupoids of ?X are equivalent. Recently it was proved that if (X, x0) is an H-group, then the fundamental groupoid ?X is a categorical group and the category of the covering spaces of (X, x0) is equivalent to the category of covering groupoids of the categorical group ?X. The purpose of this paper is to present similar results for rings and categorical rings.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anamaría Font ◽  
Bernardo Fraiman ◽  
Mariana Graña ◽  
Carmen A. Núñez ◽  
Héctor Parra De Freitas

Abstract Compactifications of the heterotic string on special Td/ℤ2 orbifolds realize a landscape of string models with 16 supercharges and a gauge group on the left-moving sector of reduced rank d + 8. The momenta of untwisted and twisted states span a lattice known as the Mikhailov lattice II(d), which is not self-dual for d > 1. By using computer algorithms which exploit the properties of lattice embeddings, we perform a systematic exploration of the moduli space for d ≤ 2, and give a list of maximally enhanced points where the U(1)d+8 enhances to a rank d + 8 non-Abelian gauge group. For d = 1, these groups are simply-laced and simply-connected, and in fact can be obtained from the Dynkin diagram of E10. For d = 2 there are also symplectic and doubly-connected groups. For the latter we find the precise form of their fundamental groups from embeddings of lattices into the dual of II(2). Our results easily generalize to d > 2.


Author(s):  
Fan Gao

Abstract For a unitary unramified genuine principal series representation of a covering group, we study the associated R-group. We prove a formula relating the R-group to the dimension of the Whittaker space for the irreducible constituents of such a principal series representation. Moreover, for certain saturated covers of a semisimple simply connected group, we also propose a simpler conjectural formula for such dimensions. This latter conjectural formula is verified in several cases, including covers of the symplectic groups.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Sameh Shenawy

Abstract Let $\mathcal {W}^{n}$ W n be the set of smooth complete simply connected n-dimensional manifolds without conjugate points. The Euclidean space and the hyperbolic space are examples of these manifolds. Let $W\in \mathcal {W}^{n}$ W ∈ W n and let A and B be two convex subsets of W. This note aims to investigate separation and slab horosphere separation of A and B. For example,sufficient conditions on A and B to be separated by a slab of horospheres are obtained. Existence and uniqueness of foot points and farthest points of a convex set A in $W\in \mathcal {W}$ W ∈ W are considered.


2021 ◽  
pp. 1-8
Author(s):  
DANIEL KASPROWSKI ◽  
MARKUS LAND

Abstract Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.


Sign in / Sign up

Export Citation Format

Share Document