Messinian Evaporites in the Mediterranean: A Model of Continuous Inflow and Outflow

Author(s):  
Peter Sonnenfeld ◽  
Icilio Finetti
2021 ◽  
Author(s):  
Cristina Corradin ◽  
Angelo Camerlenghi ◽  
Michela Giustiniani ◽  
Umberta Tinivella ◽  
Claudia Bertoni

<p>In the Mediterranean Basin, gas hydrate bottom simulating reflectors (BSR) are absent, with very few and spatially limited exceptions occurring in Eastern Mediterranean mud volcanoes and in the Nile deep sea fan. This is in spite of widespread occurrence of hydrocarbon gases in the subsurface, mainly biogenic methane, from a wide range of stratigraphic intervals.<br>In this study we model the methane hydrate stability field using all available information on DSDP and ODP boreholes in the Western Mediterranean and in the Levant Basin, including the downhole changes of pore water salinity. The models take into account the consequent pore water density changes and use known estimates of geothermal gradient. None of the drilled sites were located on seismic profiles in which a BSR is present.<br>The modelled base of the stability field of methane hydrates is located variably within, below, or even above the drilled sedimentary section (the latter case implies that it is located in the water column). We discuss the results in terms of geodynamic environments, areal distribution of Messinian evaporites, upward ion diffusion from Messinian evaporites, organic carbon content, and the peculiar thermal structure of the Mediterranean water column. <br>We conclude that the cumulative effects of geological and geochemical environments make the Mediterranean Basin a region that is unfavorable to the existence of BSRs in the seismic record, and most likely to the existence of natural gas hydrates below the seabed.<br><br></p>


2012 ◽  
Vol 82 (12) ◽  
pp. 991-1005 ◽  
Author(s):  
V. Manzi ◽  
R. Gennari ◽  
S. Lugli ◽  
M. ROVERI ◽  
N. Scafetta ◽  
...  

1978 ◽  
Vol 26 (1-2) ◽  
pp. 71-72 ◽  
Author(s):  
Kenneth J. Hsü ◽  
Peter Stoffers ◽  
David A. Ross

2020 ◽  
Author(s):  
Fadl Raad ◽  
Johanna Lofi ◽  
Agnes Maillard ◽  
Antonio Caruso ◽  
Athina Tzevahirtzian

<p>The Messinian Salinity Crisis (MSC) is a prominent and still misunderstood event that influenced the Mediterranean basin in the late Miocene leaving behind a Salt Giant (SG) widespread all over the Mediterranean basin. More than 90% of the Messinian Evaporitic deposits are located offshore with reduced access via boreholes, and thus has been studied mainly by seismic imaging. Onshore-Offshore should be considered a key for a better understanding and answering some of the controversies on the MSC.</p><p>The Balearic Promontory (BP) contains a series of small perched basins presently lying at different water depths, stepped from the present-day coastline down to the deep basin. These topographic lows trapped sedimentary series up to 500m thick, interpreted as MSC in age.<br>The reduced tectonic movements in the BP since the late Miocene (Messinian) till recent days, favored the conservation of the MSC records in this area. Moreover, recent studies revealed the presence of a Salt layer in the Central Mallorca Depression (CMD).</p><p>Considering: 1- the bathymetry of the BP, classified as an intermediate perched basin; 2- the distribution of the MSC records accumulated in a series of sub-basins more or less connected between each other; 3- the geometries of the evaporitic formations, provided by how these records appear on the seismic data; this might recall similarities between the BP records (especially the ones in the CMD) and the MSC reference records outcropping in Sicily (especially in the Caltanissetta Basin).</p><p>We perform seismic interpretation of a wide seismic reflection dataset in the study area with the aim of refining the mapping of the Messinian evaporites covering the study area. Four seismic units were identified in the BP based on their seismic facies and their seismo-stratigraphic position. We try to match up these units to the consensus Messinian 3-stages chrono-stratigraphic model proposed during the CIESM in 2008.<br>We also attempt to find similarities in geometries, facies and distribution of the MSC between the sub-basins of the BP and those described in the Sicilian sub-basins.</p>


Sign in / Sign up

Export Citation Format

Share Document