A Geometric Approach to Phase Resetting Estimation Based on Mapping Temporal to Geometric Phase

Author(s):  
Sorinel Adrian Oprisan
2004 ◽  
Vol 35 (3) ◽  
pp. 413-423 ◽  
Author(s):  
S. Chaturvedi ◽  
E. Ercolessi ◽  
G. Marmo ◽  
G. Morandi ◽  
N. Mukunda ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 132-157 ◽  
Author(s):  
Sorinel Adrian Oprisan

One effect of any external perturbations, such as presynaptic inputs, received by limit cycle oscillators when they are part of larger neural networks is a transient change in their firing rate, or phase resetting. A brief external perturbation moves the figurative point outside the limit cycle, a geometric perturbation that we mapped into a transient change in the firing rate, or a temporal phase resetting. In order to gain a better qualitative understanding of the link between the geometry of the limit cycle and the phase resetting curve (PRC), we used a moving reference frame with one axis tangent and the others normal to the limit cycle. We found that the stability coefficients associated with the unperturbed limit cycle provided good quantitative predictions of both the tangent and the normal geometric displacements induced by external perturbations. A geometric-to-temporal mapping allowed us to correctly predict the PRC while preserving the intuitive nature of this geometric approach.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

1984 ◽  
Vol 45 (C6) ◽  
pp. C6-87-C6-94
Author(s):  
H. Reinhardt ◽  
R. Balian ◽  
Y. Alhassid

1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


Author(s):  
Jayhoon Chung ◽  
Guoda Lian ◽  
Lew Rabenberg

Abstract Since strain engineering plays a key role in semiconductor technology development, a reliable and reproducible technique to measure local strain in devices is necessary for process development and failure analysis. In this paper, geometric phase analysis of high angle annular dark field - scanning transmission electron microscope images is presented as an effective technique to measure local strains in the current node of Si based transistors.


Sign in / Sign up

Export Citation Format

Share Document