Frontal Cortex Activation During Electrical Muscle Stimulation as Revealed by Functional Near-Infrared Spectroscopy

Author(s):  
Makii Muthalib ◽  
Marco Ferrari ◽  
Valentina Quaresima ◽  
Kazunori Nosaka
2019 ◽  
Author(s):  
Takayuki Nakahachi ◽  
Ryouhei Ishii ◽  
Leonides Canuet ◽  
Iori Sato ◽  
Kiyoko Kamibeppu ◽  
...  

Abstract Background: Tetris has recently expanded its place of activity not only to the original entertainment but also to clinical applications such as prevention of trauma flashback. However, to our knowledge, no studies focused on the cortical activation patterns themselves when playing Tetris in a natural form. This study aimed to investigate the activation patterns in the frontal cortex during naturally-performed Tetris for 90 seconds in 24 healthy subjects using functional near-infrared spectroscopy robust to artifacts by motion and electric devices. We also calculated the correlations of behavioral data with cortical activations, and compared the differences in activations between the high and low performers of Tetris. Results: The results demonstrated that significant activations in the frontal cortex during Tetris play had two factors, each showing a similar activation pattern. One of the factors was distributed over the lateral prefrontal cortex bilaterally, and the other was localized to the right prefrontal cortex. Moreover, in the high performers, the activations of the areas centered on the right dorsolateral prefrontal cortex (DLPFC) were estimated to increase and correlations of the activations between those areas and the other areas decrease compared with the low performers. Conclusions: It is suggested that high Tetris performers might reduce functional connectivity between activations of the areas centered on the right DLPFC and the other areas, and increase the local activations compared with low performers. It would be necessary to consider whether its visuospatial cognitive loads stimulate the appropriate areas of the subject’s brain to effectively utilize Tetris play for clinical interventions.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241578
Author(s):  
Hyoung-Sukh Kim ◽  
Jin-Hwa Lee ◽  
So-Hyeon Yoo

This study investigated consumers' responses to fashion visual merchandising (VM) from a neuroscientific perspective. The brain activations of 20 subjects differently involved in fashion were recorded using functional near-infrared spectroscopy in response to three different fashion VM types. According to the types of fashion VM, significant differences were observed, which were significantly higher for the creative VM. Moreover, highly fashion-involved subjects showed activation of the orbital frontal cortex region in response to the creative VM. Based on these results, it is suggested that marketing strategies should be devised explicitly for the brand's targeted audience and goals.


2009 ◽  
Vol 29 (5) ◽  
pp. 903-910 ◽  
Author(s):  
Giuseppe Curcio ◽  
Michele Ferrara ◽  
Tania Limongi ◽  
Daniela Tempesta ◽  
Gabriele Di Sante ◽  
...  

This study aimed to evaluate by functional near-infrared spectroscopy (fNIRS), the effects induced by an acute exposure (40 mins) to a GSM (Global System for Mobile Communications) signal emitted by a mobile phone (MP) on the oxygenation of the frontal cortex. Eleven healthy volunteers underwent two sessions (Real and Sham exposure) after a crossover, randomized, double-blind paradigm. The whole procedure lasted 60 mins: 10-mins baseline (Bsl), 40-mins (Exposure), and 10-mins recovery (Post-Exp). Together with frontal hemodynamics, heart rate, objective and subjective vigilance, and self-evaluation of subjective symptoms were also assessed. The fNIRS results showed a slight influence of the GSM signal on frontal cortex, with a linear increase in [HHb] as a function of time in the Real exposure condition (F4,40 = 2.67; P = 0.04). No other measure showed any GSM exposure-dependent changes. These results suggest that fNIRS is a convenient tool for safely and noninvasively investigating the cortical activation in MP exposure experimental settings. Given the short-term effects observed in this study, the results should be confirmed on a larger sample size and using a multichannel instrument that allows the investigation of a wider portion of the frontal cortex.


Author(s):  
S. Srilekha ◽  
B. Vanathi

This paper focuses on electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) comparison to help the rehabilitation patients. Both methods have unique techniques and placement of electrodes. Usage of signals are different in application based on the economic conditions. This study helps in choosing the signal for the betterment of analysis. Ten healthy subject datasets of EEG & FNIRS are taken and applied to plot topography separately. Accuracy, Sensitivity, peaks, integral areas, etc are compared and plotted. The main advantages of this study are to prompt their necessities in the analysis of rehabilitation devices to manage their life as a typical individual.


Sign in / Sign up

Export Citation Format

Share Document