Differential Equations and Chemical Master Equation Models for Gene Regulatory Networks

2014 ◽  
pp. 1-9
Author(s):  
Ovidiu Lipan
Author(s):  
Youfang Cao ◽  
Anna Terebus ◽  
Jie Liang

Stochasticity plays important roles in many biological networks. A fundamental framework for studying the full stochasticity is the Discrete Chemical Master Equation (dCME). Under this framework, the combination of copy numbers of molecular species defines the microstate of the molecular interactions in the network. The probability distribution over these microstates provide a full description of the properties of a stochastic molecular network. However, it is challenging to solve a dCME. In this chapter, we will first discuss how to derive approximation methods including Fokker-Planck equation and the chemical Langevin equation from the dCME. We also discuss the widely used stochastic simulation method. After that, we focus on the direct solutions to the dCME. We first discuss the Finite State Projection (FSP) method, and then introduce the recently developed finite buffer method (fb-dCME) for directly solving both steady state and time-evolving probability landscape of dCME. We show the advantages of the fb-dCME method using two realistic gene regulatory networks.


2020 ◽  
Vol 36 (19) ◽  
pp. 4885-4893 ◽  
Author(s):  
Baoshan Ma ◽  
Mingkun Fang ◽  
Xiangtian Jiao

Abstract Motivation Gene regulatory networks (GRNs) capture the regulatory interactions between genes, resulting from the fundamental biological process of transcription and translation. In some cases, the topology of GRNs is not known, and has to be inferred from gene expression data. Most of the existing GRNs reconstruction algorithms are either applied to time-series data or steady-state data. Although time-series data include more information about the system dynamics, steady-state data imply stability of the underlying regulatory networks. Results In this article, we propose a method for inferring GRNs from time-series and steady-state data jointly. We make use of a non-linear ordinary differential equations framework to model dynamic gene regulation and an importance measurement strategy to infer all putative regulatory links efficiently. The proposed method is evaluated extensively on the artificial DREAM4 dataset and two real gene expression datasets of yeast and Escherichia coli. Based on public benchmark datasets, the proposed method outperforms other popular inference algorithms in terms of overall score. By comparing the performance on the datasets with different scales, the results show that our method still keeps good robustness and accuracy at a low computational complexity. Availability and implementation The proposed method is written in the Python language, and is available at: https://github.com/lab319/GRNs_nonlinear_ODEs Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 16 ◽  
pp. 755-763
Author(s):  
Inna Samuilik ◽  
Felix Sadyrbaev

We consider the three-dimensional gene regulatory network (GRN in short). This model consists of ordinary differential equations of a special kind, where the nonlinearity is represented by a sigmoidal function and the linear part is present also. The evolution of GRN is described by the solution vector X(t), depending on time. We describe the changes that system undergoes if the entries of the regulatory matrix are perturbed in some way.


2019 ◽  
Author(s):  
J. Holehouse ◽  
R. Grima

AbstractPropensity functions of the Hill-type are commonly used to model transcriptional regulation in stochastic models of gene expression. This leads to an effective reduced master equation for the mRNA and protein dynamics only. Based on deterministic considerations, it is often stated or tacitly assumed that such models are valid in the limit of rapid promoter switching. Here, starting from the chemical master equation describing promoter-protein interactions, mRNA transcription, protein translation and decay, we prove that in the limit of fast promoter switching, the distribution of protein numbers is different than that given by standard stochastic models with Hill-type propensities. We show the differences are pronounced whenever the protein-DNA binding rate is much larger than the unbinding rate, a special case of fast promoter switching. Furthermore we show using both theory and simulations that use of the standard stochastic models leads to drastically incorrect predictions for the switching properties of positive feedback loops and that these differences decrease with increasing mean protein burst size. Our results confirm that commonly used stochastic models of gene regulatory networks are only accurate in a subset of the parameter space consistent with rapid promoter switching.Statement of SignificanceA large number of models of gene regulatory networks in the literature assume that since promoter switching is fast then transcriptional regulation can be effectively modeled using Hill functions. While this approach can be rigorously justified for deterministic models, it is presently unclear if it is also the case for stochastic models. In this article we prove that this is not the case, i.e. stochastic models of gene regulatory systems, namely those with feedback loops, describing transcriptional regulation using Hill functions are only valid in a subset of parameter conditions consistent with fast promoter switching. We identify parameter regimes where these models are correct and where their predictions cannot be trusted.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Felikss Sadirbajevs

The system of two the first order ordinary differential equations arising in the gene regulatory networks theory is studied. The structure of attractors for this system is described for three important behavioral cases: activation, inhibition, mixed activation-inhibition. The geometrical approach combined with the vector field analysis allows treating the problem in full generality. A number of propositions are stated and the proof is geometrical, avoiding complex analytic. Although not all the possible cases are considered, the instructions are given what to do in any particular situation.


2009 ◽  
Vol 23 (06) ◽  
pp. 773-789 ◽  
Author(s):  
OVIDIU LIPAN

Systems biology aims to describe gene regulatory networks at both experimental and theoretical levels. Mathematical formalisms used at present to describe the behavior of genetic networks range from stochastic to deterministic. The stochastic approach is further subdivided and moves from Langevin to the Master equation. This review presents the Master equation approach.


Sign in / Sign up

Export Citation Format

Share Document