Basal Ganglia Neural Coding of Natural Action Sequences

Author(s):  
J. Wayne Aldridge ◽  
Kent C. Berridge
2014 ◽  
Vol 17 (3) ◽  
pp. 423-430 ◽  
Author(s):  
Xin Jin ◽  
Fatuel Tecuapetla ◽  
Rui M Costa

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Miriam Matamales ◽  
Zala Skrbis ◽  
Matthew R Bailey ◽  
Peter D Balsam ◽  
Bernard W Balleine ◽  
...  

The acquisition of motor skills involves implementing action sequences that increase task efficiency while reducing cognitive loads. This learning capacity depends on specific cortico-basal ganglia circuits that are affected by normal ageing. Here, combining a series of novel behavioural tasks with extensive neuronal mapping and targeted cell manipulations in mice, we explored how ageing of cortico-basal ganglia networks alters the microstructure of action throughout sequence learning. We found that, after extended training, aged mice produced shorter actions and displayed squeezed automatic behaviours characterised by ultrafast oligomeric action chunks that correlated with deficient reorganisation of corticostriatal activity. Chemogenetic disruption of a striatal subcircuit in young mice reproduced age-related within-sequence features, and the introduction of an action-related feedback cue temporarily restored normal sequence structure in aged mice. Our results reveal static properties of aged cortico-basal ganglia networks that introduce temporal limits to action automaticity, something that can compromise procedural learning in ageing.


2011 ◽  
Vol 12 (S1) ◽  
Author(s):  
Jennifer M Lewis ◽  
Jonathan M Chambers ◽  
Peter Redgrave ◽  
Kevin Gurney

2007 ◽  
Vol 362 (1485) ◽  
pp. 1573-1583 ◽  
Author(s):  
J.C Houk ◽  
C Bastianen ◽  
D Fansler ◽  
A Fishbach ◽  
D Fraser ◽  
...  

Subcortical loops through the basal ganglia and the cerebellum form computationally powerful distributed processing modules (DPMs). This paper relates the computational features of a DPM's loop through the basal ganglia to experimental results for two kinds of natural action selection. First, functional imaging during a serial order recall task was used to study human brain activity during the selection of sequential actions from working memory. Second, microelectrode recordings from monkeys trained in a step-tracking task were used to study the natural selection of corrective submovements. Our DPM-based model assisted in the interpretation of puzzling data from both of these experiments. We come to posit that the many loops through the basal ganglia each regulate the embodiment of pattern formation in a given area of cerebral cortex. This operation serves to instantiate different kinds of action (or thought) mediated by different areas of cerebral cortex. We then use our findings to formulate a model of the aetiology of schizophrenia.


2019 ◽  
Author(s):  
Eric Garr

Animals engage in intricately woven and choreographed action sequences that are constructed from trial-and-error learning. The mechanisms by which the brain links together individual actions which are later recalled as fluid chains of behavior are not fully understood, but there is broad consensus that the basal ganglia play a crucial role in this process. This paper presents a comprehensive review of the role of the basal ganglia in action sequencing, with a focus on whether the computational framework of reinforcement learning can capture key behavioral features of sequencing and the neural mechanisms that underlie them. While a simple neurocomputational model of reinforcement learning can capture key features of action sequence learning, this model is not sufficient to capture goal-directed control of sequences or their hierarchical representation. The hierarchical structure of action sequences, in particular, poses a challenge for building better models of action sequencing, and it is in this regard that further investigations into basal ganglia information processing may be informative.


2015 ◽  
Vol 33 ◽  
pp. 188-196 ◽  
Author(s):  
Xin Jin ◽  
Rui M Costa

2019 ◽  
Author(s):  
Eric Garr ◽  
Andrew R. Delamater

AbstractAnimals engage in intricate action sequences that are constructed during instrumental learning. There is broad consensus that the basal ganglia play a crucial role in the formation and fluid performance of action sequences. To investigate the role of the basal ganglia direct and indirect pathways in action sequencing, we virally expressed Cre-dependent Gi-DREADDs in either the dorsomedial (DMS) or dorsolateral (DLS) striatum during and/or after action sequence learning in D1 and D2 Cre rats. Action sequence performance in D1 Cre rats was slowed down early in training when DREADDs were activated in the DMS, but sped up when activated in the DLS. Acquisition of the reinforced sequence was hindered when DREADDs were activated in the DLS of D2 Cre rats. Outcome devaluation tests conducted after training revealed that the goal-directed control of action sequence rates was immune to chemogenetic inhibition—rats suppressed the rate of sequence performance when rewards were devalued. Sequence initiation latencies were generally sensitive to outcome devaluation, except in the case where DREADD activation was removed in D2 Cre rats that previously experienced DREADD activation in the DMS during training. Sequence completion latencies were generally not sensitive to outcome devaluation, except in the case where D1 Cre rats experienced DREADD activation in the DMS during training and test. Collectively, these results suggest that the indirect pathway originating from the DLS is part of a circuit involved in the effective reinforcement of action sequences, while the direct and indirect pathways originating from the DMS contribute to the goal-directed control of sequence completion and initiation, respectively.


2019 ◽  
Vol 42 ◽  
Author(s):  
Giulia Frezza ◽  
Pierluigi Zoccolotti

Abstract The convincing argument that Brette makes for the neural coding metaphor as imposing one view of brain behavior can be further explained through discourse analysis. Instead of a unified view, we argue, the coding metaphor's plasticity, versatility, and robustness throughout time explain its success and conventionalization to the point that its rhetoric became overlooked.


2018 ◽  
Vol 3 (6) ◽  
pp. 61-76
Author(s):  
Leslie D. Grush ◽  
Frederick J. Gallun ◽  
Curtis J. Billings
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document